
Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 14. File Formats »

14.5. xdrlib — Encode and decode XDR data¶

The xdrlib module supports the External Data Representation Standard as described in RFC 1014, written by Sun Microsystems, Inc. June 1987. It supports

most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another for unpacking from XDR representation. There are

also two exception classes.

class xdrlib.Packer¶

Packer is the class for packing data into XDR representation. The Packer class is instantiated with no arguments.

class xdrlib.Unpacker(data)¶
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input buffer is given as data.

See also

RFC 1014 - XDR: External Data Representation Standard

This RFC defined the encoding of data which was XDR at the time this module was originally written. It has apparently been obsoleted by RFC 1832.

RFC 1832 - XDR: External Data Representation Standard

Newer RFC that provides a revised definition of XDR.

14.5.1. Packer Objects¶

Packer instances have the following methods:

Packer.get_buffer()¶
Returns the current pack buffer as a string.

Packer.reset()¶
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriate pack_type() method. Each method takes a single argument, the

value to pack. The following simple data type packing methods are supported: pack_uint(), pack_int(), pack_enum(), pack_bool(), pack_uhyper(),

and pack_hyper().

Packer.pack_float(value)¶
Packs the single-precision floating point number value.

Packer.pack_double(value)¶
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

Packer.pack_fstring(n, s)¶
Packs a fixed length string, s. n is the length of the string but it is not packed into the data buffer. The string is padded with null bytes if necessary to guaranteed 4

byte alignment.

Packer.pack_fopaque(n, data)¶
Packs a fixed length opaque data stream, similarly to pack_fstring().

Packer.pack_string(s)¶
Packs a variable length string, s. The length of the string is first packed as an unsigned integer, then the string data is packed with pack_fstring().

Packer.pack_opaque(data)¶
Packs a variable length opaque data string, similarly to pack_string().

Packer.pack_bytes(bytes)¶
Packs a variable length byte stream, similarly to pack_string().

The following methods support packing arrays and lists:

Packer.pack_list(list, pack_item)¶

http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1832.html
http://tools.ietf.org/html/rfc1832.html

Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is not available until the entire list has been walked. For

each item in the list, an unsigned integer 1 is packed first, followed by the data value from the list. pack_item is the function that is called to pack the individual

item. At the end of the list, an unsigned integer 0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib

p = xdrlib.Packer()

p.pack_list([1, 2, 3], p.pack_int)

Packer.pack_farray(n, array, pack_item)¶
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed into the buffer, but a ValueError exception is raised if

len(array) is not equal to n. As above, pack_item is the function used to pack each element.

Packer.pack_array(list, pack_item)¶
Packs a variable length list of homogeneous items. First, the length of the list is packed as an unsigned integer, then each element is packed as in

pack_farray() above.

14.5.2. Unpacker Objects¶

The Unpacker class offers the following methods:

Unpacker.reset(data)¶
Resets the string buffer with the given data.

Unpacker.get_position()¶
Returns the current unpack position in the data buffer.

Unpacker.set_position(position)¶
Sets the data buffer unpack position to position. You should be careful about using get_position() and set_position().

Unpacker.get_buffer()¶
Returns the current unpack data buffer as a string.

Unpacker.done()¶
Indicates unpack completion. Raises an Error exception if all of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker. Unpacking methods are of the form unpack_type(), and

take no arguments. They return the unpacked object.

Unpacker.unpack_float()¶
Unpacks a single-precision floating point number.

Unpacker.unpack_double()¶
Unpacks a double-precision floating point number, similarly to unpack_float().

In addition, the following methods unpack strings, bytes, and opaque data:

Unpacker.unpack_fstring(n)¶
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with null bytes to guaranteed 4 byte alignment is assumed.

Unpacker.unpack_fopaque(n)¶
Unpacks and returns a fixed length opaque data stream, similarly to unpack_fstring().

Unpacker.unpack_string()¶
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned integer, then the string data is unpacked with

unpack_fstring().

Unpacker.unpack_opaque()¶
Unpacks and returns a variable length opaque data string, similarly to unpack_string().

Unpacker.unpack_bytes()¶
Unpacks and returns a variable length byte stream, similarly to unpack_string().

The following methods support unpacking arrays and lists:

Unpacker.unpack_list(unpack_item)¶
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first unpacking an unsigned integer flag. If the flag is 1, then the

item is unpacked and appended to the list. A flag of 0 indicates the end of the list. unpack_item is the function that is called to unpack the items.

Unpacker.unpack_farray(n, unpack_item)¶
Unpacks and returns (as a list) a fixed length array of homogeneous items. n is number of list elements to expect in the buffer. As above, unpack_item is the

function used to unpack each element.

Unpacker.unpack_array(unpack_item)¶
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is unpacked as an unsigned integer, then each element is unpacked

as in unpack_farray() above.

14.5.3. Exceptions¶

Exceptions in this module are coded as class instances:

exception xdrlib.Error¶

The base exception class. Error has a single public data member msg containing the description of the error.

exception xdrlib.ConversionError¶

Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib

p = xdrlib.Packer()

try:

 p.pack_double(8.01)

except xdrlib.ConversionError, instance:

 print 'packing the double failed:', instance.msg

Table Of Contents

14.5. xdrlib — Encode and decode XDR data

• 14.5.1. Packer Objects

• 14.5.2. Unpacker Objects

• 14.5.3. Exceptions

Previous topic

14.4. netrc — netrc file processing

Next topic

14.6. plistlib — Generate and parse Mac OS X .plist files

This Page

• Show Source

Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 14. File Formats »

© Copyright 1990-2010, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Feb 26, 2010. Created using Sphinx 0.6.3.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

	Navigation
	Navigation
	Navigation

	14.5. xdrlib — Encode and decode XDR data¶
	14.5.1. Packer Objects¶
	14.5.2. Unpacker Objects¶
	14.5.3. Exceptions¶
	Table Of Contents
	Previous topic
	Next topic

	This Page
	Navigation

