
Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 23. Internationalization »

23.1. gettext — Multilingual internationalization services¶

The gettext module provides internationalization (I18N) and localization (L10N) services for your Python modules and applications. It supports both the GNU

gettext message catalog API and a higher level, class-based API that may be more appropriate for Python files. The interface described below allows you to

write your module and application messages in one natural language, and provide a catalog of translated messages for running under different natural languages.

Some hints on localizing your Python modules and applications are also given.

23.1.1. GNU gettext API¶

The gettext module defines the following API, which is very similar to the GNU gettext API. If you use this API you will affect the translation of your entire

application globally. Often this is what you want if your application is monolingual, with the choice of language dependent on the locale of your user. If you are

localizing a Python module, or if your application needs to switch languages on the fly, you probably want to use the class-based API instead.

gettext.bindtextdomain(domain[, localedir])¶

Bind the domain to the locale directory localedir. More concretely, gettext will look for binary .mo files for the given domain using the path (on Unix):

localedir/language/LC_MESSAGES/domain.mo, where languages is searched for in the environment variables LANGUAGE, LC_ALL, LC_MESSAGES,

and LANG respectively.

If localedir is omitted or None, then the current binding for domain is returned. [1]

gettext.bind_textdomain_codeset(domain[, codeset])¶

Bind the domain to codeset, changing the encoding of strings returned by the gettext() family of functions. If codeset is omitted, then the current binding is

returned.

New in version 2.4.

gettext.textdomain([domain])¶
Change or query the current global domain. If domain is None, then the current global domain is returned, otherwise the global domain is set to domain, which is

returned.

gettext.gettext(message)¶
Return the localized translation of message, based on the current global domain, language, and locale directory. This function is usually aliased as _() in the

local namespace (see examples below).

gettext.lgettext(message)¶

Equivalent to gettext(), but the translation is returned in the preferred system encoding, if no other encoding was explicitly set with

bind_textdomain_codeset().

New in version 2.4.

gettext.dgettext(domain, message)¶
Like gettext(), but look the message up in the specified domain.

gettext.ldgettext(domain, message)¶

Equivalent to dgettext(), but the translation is returned in the preferred system encoding, if no other encoding was explicitly set with

bind_textdomain_codeset().

New in version 2.4.

gettext.ngettext(singular, plural, n)¶

Like gettext(), but consider plural forms. If a translation is found, apply the plural formula to n, and return the resulting message (some languages have more

than two plural forms). If no translation is found, return singular if n is 1; return plural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python expression that has a free variable n; the expression evaluates to the index of the plural in

the catalog. See the GNU gettext documentation for the precise syntax to be used in .po files and the formulas for a variety of languages.

New in version 2.3.

gettext.lngettext(singular, plural, n)¶

Equivalent to ngettext(), but the translation is returned in the preferred system encoding, if no other encoding was explicitly set with

bind_textdomain_codeset().

New in version 2.4.

gettext.dngettext(domain, singular, plural, n)¶

Like ngettext(), but look the message up in the specified domain.

New in version 2.3.

gettext.ldngettext(domain, singular, plural, n)¶

Equivalent to dngettext(), but the translation is returned in the preferred system encoding, if no other encoding was explicitly set with

bind_textdomain_codeset().

New in version 2.4.

Note that GNU gettext also defines a dcgettext() method, but this was deemed not useful and so it is currently unimplemented.

Here’s an example of typical usage for this API:

import gettext

gettext.bindtextdomain('myapplication', '/path/to/my/language/directory')

gettext.textdomain('myapplication')

_ = gettext.gettext

...

print _('This is a translatable string.')

23.1.2. Class-based API¶

The class-based API of the gettext module gives you more flexibility and greater convenience than the GNU gettext API. It is the recommended way of

localizing your Python applications and modules. gettext defines a “translations” class which implements the parsing of GNU .mo format files, and has

methods for returning either standard 8-bit strings or Unicode strings. Instances of this “translations” class can also install themselves in the built-in namespace as

the function _().

gettext.find(domain[, localedir[, languages[, all]]])¶

This function implements the standard .mo file search algorithm. It takes a domain, identical to what textdomain() takes. Optional localedir is as in

bindtextdomain() Optional languages is a list of strings, where each string is a language code.

If localedir is not given, then the default system locale directory is used. [2] If languages is not given, then the following environment variables are searched:

LANGUAGE, LC_ALL, LC_MESSAGES, and LANG. The first one returning a non-empty value is used for the languages variable. The environment variables

should contain a colon separated list of languages, which will be split on the colon to produce the expected list of language code strings.

find() then expands and normalizes the languages, and then iterates through them, searching for an existing file built of these components:

localedir/language/LC_MESSAGES/domain.mo

The first such file name that exists is returned by find(). If no such file is found, then None is returned. If all is given, it returns a list of all file names, in the

order in which they appear in the languages list or the environment variables.

gettext.translation(domain[, localedir[, languages[, class_[, fallback[, codeset]]]]])¶

Return a Translations instance based on the domain, localedir, and languages, which are first passed to find() to get a list of the associated .mo file

paths. Instances with identical .mo file names are cached. The actual class instantiated is either class_ if provided, otherwise GNUTranslations. The class’s

constructor must take a single file object argument. If provided, codeset will change the charset used to encode translated strings.

If multiple files are found, later files are used as fallbacks for earlier ones. To allow setting the fallback, copy.copy() is used to clone each translation object

from the cache; the actual instance data is still shared with the cache.

If no .mo file is found, this function raises IOError if fallback is false (which is the default), and returns a NullTranslations instance if fallback is true.

Changed in version 2.4: Added the codeset parameter.

gettext.install(domain[, localedir[, unicode[, codeset[, names]]]])¶

This installs the function _() in Python’s builtins namespace, based on domain, localedir, and codeset which are passed to the function translation(). The

unicode flag is passed to the resulting translation object’s install() method.

For the names parameter, please see the description of the translation object’s install() method.

As seen below, you usually mark the strings in your application that are candidates for translation, by wrapping them in a call to the _() function, like this:

print _('This string will be translated.')

For convenience, you want the _() function to be installed in Python’s builtins namespace, so it is easily accessible in all modules of your application.

Changed in version 2.4: Added the codeset parameter.

Changed in version 2.5: Added the names parameter.

23.1.2.1. The NullTranslations class¶

Translation classes are what actually implement the translation of original source file message strings to translated message strings. The base class used by all

translation classes is NullTranslations; this provides the basic interface you can use to write your own specialized translation classes. Here are the methods

of NullTranslations:

class gettext.NullTranslations([fp])¶

Takes an optional file object fp, which is ignored by the base class. Initializes “protected” instance variables _info and _charset which are set by derived classes,

as well as _fallback, which is set through add_fallback(). It then calls self._parse(fp) if fp is not None.

_parse(fp)¶
No-op’d in the base class, this method takes file object fp, and reads the data from the file, initializing its message catalog. If you have an unsupported message

catalog file format, you should override this method to parse your format.

add_fallback(fallback)¶
Add fallback as the fallback object for the current translation object. A translation object should consult the fallback if it cannot provide a translation for a given

message.

gettext(message)¶
If a fallback has been set, forward gettext() to the fallback. Otherwise, return the translated message. Overridden in derived classes.

lgettext(message)¶

If a fallback has been set, forward lgettext() to the fallback. Otherwise, return the translated message. Overridden in derived classes.

New in version 2.4.

ugettext(message)¶
If a fallback has been set, forward ugettext() to the fallback. Otherwise, return the translated message as a Unicode string. Overridden in derived classes.

ngettext(singular, plural, n)¶

If a fallback has been set, forward ngettext() to the fallback. Otherwise, return the translated message. Overridden in derived classes.

New in version 2.3.

lngettext(singular, plural, n)¶

If a fallback has been set, forward ngettext() to the fallback. Otherwise, return the translated message. Overridden in derived classes.

New in version 2.4.

ungettext(singular, plural, n)¶

If a fallback has been set, forward ungettext() to the fallback. Otherwise, return the translated message as a Unicode string. Overridden in derived classes.

New in version 2.3.

info()¶
Return the “protected” _info variable.

charset()¶
Return the “protected” _charset variable.

output_charset()¶

Return the “protected” _output_charset variable, which defines the encoding used to return translated messages.

New in version 2.4.

set_output_charset(charset)¶

Change the “protected” _output_charset variable, which defines the encoding used to return translated messages.

New in version 2.4.

install([unicode[, names]])¶

If the unicode flag is false, this method installs self.gettext() into the built-in namespace, binding it to _. If unicode is true, it binds self.ugettext()

instead. By default, unicode is false.

If the names parameter is given, it must be a sequence containing the names of functions you want to install in the builtins namespace in addition to _().

Supported names are 'gettext' (bound to self.gettext() or self.ugettext() according to the unicode flag), 'ngettext' (bound to

self.ngettext() or self.ungettext() according to the unicode flag), 'lgettext' and 'lngettext'.

Note that this is only one way, albeit the most convenient way, to make the _() function available to your application. Because it affects the entire application

globally, and specifically the built-in namespace, localized modules should never install _(). Instead, they should use this code to make _() available to their

module:

import gettext

t = gettext.translation('mymodule', ...)

_ = t.gettext

This puts _() only in the module’s global namespace and so only affects calls within this module.

Changed in version 2.5: Added the names parameter.

23.1.2.2. The GNUTranslations class¶

The gettext module provides one additional class derived from NullTranslations: GNUTranslations. This class overrides _parse() to enable reading

GNU gettext format .mo files in both big-endian and little-endian format. It also coerces both message ids and message strings to Unicode.

GNUTranslations parses optional meta-data out of the translation catalog. It is convention with GNU gettext to include meta-data as the translation for the

empty string. This meta-data is in RFC 822-style key: value pairs, and should contain the Project-Id-Version key. If the key Content-Type is found,

then the charset property is used to initialize the “protected” _charset instance variable, defaulting to None if not found. If the charset encoding is specified,

then all message ids and message strings read from the catalog are converted to Unicode using this encoding. The ugettext() method always returns a

Unicode, while the gettext() returns an encoded 8-bit string. For the message id arguments of both methods, either Unicode strings or 8-bit strings containing

only US-ASCII characters are acceptable. Note that the Unicode version of the methods (i.e. ugettext() and ungettext()) are the recommended interface

to use for internationalized Python programs.

The entire set of key/value pairs are placed into a dictionary and set as the “protected” _info instance variable.

If the .mo file’s magic number is invalid, or if other problems occur while reading the file, instantiating a GNUTranslations class can raise IOError.

The following methods are overridden from the base class implementation:

GNUTranslations.gettext(message)¶
Look up the message id in the catalog and return the corresponding message string, as an 8-bit string encoded with the catalog’s charset encoding, if known. If

there is no entry in the catalog for the message id, and a fallback has been set, the look up is forwarded to the fallback’s gettext() method. Otherwise, the

message id is returned.

GNUTranslations.lgettext(message)¶

Equivalent to gettext(), but the translation is returned in the preferred system encoding, if no other encoding was explicitly set with set_output_charset().

New in version 2.4.

GNUTranslations.ugettext(message)¶
Look up the message id in the catalog and return the corresponding message string, as a Unicode string. If there is no entry in the catalog for the message id,

and a fallback has been set, the look up is forwarded to the fallback’s ugettext() method. Otherwise, the message id is returned.

GNUTranslations.ngettext(singular, plural, n)¶

Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup in the catalog, while n is used to determine which plural form

to use. The returned message string is an 8-bit string encoded with the catalog’s charset encoding, if known.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the fallback’s ngettext() method. Otherwise, when n is 1

singular is returned, and plural is returned in all other cases.

New in version 2.3.

GNUTranslations.lngettext(singular, plural, n)¶

Equivalent to gettext(), but the translation is returned in the preferred system encoding, if no other encoding was explicitly set with set_output_charset().

New in version 2.4.

GNUTranslations.ungettext(singular, plural, n)¶

http://tools.ietf.org/html/rfc822.html

Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup in the catalog, while n is used to determine which plural form

to use. The returned message string is a Unicode string.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the fallback’s ungettext() method. Otherwise, when n is 1

singular is returned, and plural is returned in all other cases.

Here is an example:

n = len(os.listdir('.'))

cat = GNUTranslations(somefile)

message = cat.ungettext(

 'There is %(num)d file in this directory',

 'There are %(num)d files in this directory',

 n) % {'num': n}

New in version 2.3.

23.1.2.3. Solaris message catalog support¶

The Solaris operating system defines its own binary .mo file format, but since no documentation can be found on this format, it is not supported at this time.

23.1.2.4. The Catalog constructor¶

GNOME uses a version of the gettext module by James Henstridge, but this version has a slightly different API. Its documented usage was:

import gettext

cat = gettext.Catalog(domain, localedir)

_ = cat.gettext

print _('hello world')

For compatibility with this older module, the function Catalog() is an alias for the translation() function described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping API, but this appears to be unused and so is not

currently supported.

23.1.3. Internationalizing your programs and modules¶

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages. Localization (L10N) refers to the adaptation of your

program, once internationalized, to the local language and cultural habits. In order to provide multilingual messages for your Python programs, you need to take

the following steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use the gettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that needs to be translated should be marked by wrapping it in

_('...') — that is, a call to the function _(). For example:

filename = 'mylog.txt'

message = _('writing a log message')

fp = open(filename, 'w')

fp.write(message)

fp.close()

In this example, the string 'writing a log message' is marked as a candidate for translation, while the strings 'mylog.txt' and 'w' are not.

The Python distribution comes with two tools which help you generate the message catalogs once you’ve prepared your source code. These may or may not be

available from a binary distribution, but they can be found in a source distribution, in the Tools/i18n directory.

The pygettext [3] program scans all your Python source code looking for the strings you previously marked as translatable. It is similar to the GNU gettext

program except that it understands all the intricacies of Python source code, but knows nothing about C or C++ source code. You don’t need GNU gettext

unless you’re also going to be translating C code (such as C extension modules).

pygettext generates textual Uniforum-style human readable message catalog .pot files, essentially structured human readable files which contain every

marked string in the source code, along with a placeholder for the translation strings. pygettext is a command line script that supports a similar command line

interface as xgettext; for details on its use, run:

pygettext.py --help

Copies of these .pot files are then handed over to the individual human translators who write language-specific versions for every supported natural language.

They send you back the filled in language-specific versions as a .po file. Using the msgfmt.py [4] program (in the Tools/i18n directory), you take the .po

files from your translators and generate the machine-readable .mo binary catalog files. The .mo files are what the gettext module uses for the actual

translation processing during run-time.

How you use the gettext module in your code depends on whether you are internationalizing a single module or your entire application. The next two sections

will discuss each case.

23.1.3.1. Localizing your module¶

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace. You should not use the GNU gettext API but

instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation .mo files reside in /usr/share/locale in GNU gettext format.

Here’s what you would put at the top of your module:

import gettext

t = gettext.translation('spam', '/usr/share/locale')

_ = t.lgettext

If your translators were providing you with Unicode strings in their .po files, you’d instead do:

import gettext

t = gettext.translation('spam', '/usr/share/locale')

_ = t.ugettext

23.1.3.2. Localizing your application¶

If you are localizing your application, you can install the _() function globally into the built-in namespace, usually in the main driver file of your application. This

will let all your application-specific files just use _('...') without having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

import gettext

gettext.install('myapplication')

If you need to set the locale directory or the unicode flag, you can pass these into the install() function:

import gettext

gettext.install('myapplication', '/usr/share/locale', unicode=1)

23.1.3.3. Changing languages on the fly¶

If your program needs to support many languages at the same time, you may want to create multiple translation instances and then switch between them

explicitly, like so:

import gettext

lang1 = gettext.translation('myapplication', languages=['en'])

lang2 = gettext.translation('myapplication', languages=['fr'])

lang3 = gettext.translation('myapplication', languages=['de'])

start by using language1

lang1.install()

... time goes by, user selects language 2

lang2.install()

... more time goes by, user selects language 3

lang3.install()

23.1.3.4. Deferred translations¶

In most coding situations, strings are translated where they are coded. Occasionally however, you need to mark strings for translation, but defer actual translation

until later. A classic example is:

animals = ['mollusk',

 'albatross',

 'rat',

 'penguin',

 'python',]

...

for a in animals:

 print a

Here, you want to mark the strings in the animals list as being translatable, but you don’t actually want to translate them until they are printed.

Here is one way you can handle this situation:

def _(message): return message

animals = [_('mollusk'),

 _('albatross'),

 _('rat'),

 _('penguin'),

 _('python'),]

del _

...

for a in animals:

 print _(a)

This works because the dummy definition of _() simply returns the string unchanged. And this dummy definition will temporarily override any definition of _() in

the built-in namespace (until the del command). Take care, though if you have a previous definition of _() in the local namespace.

Note that the second use of _() will not identify “a” as being translatable to the pygettext program, since it is not a string.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_('mollusk'),

 N_('albatross'),

 N_('rat'),

 N_('penguin'),

 N_('python'),]

...

for a in animals:

 print _(a)

In this case, you are marking translatable strings with the function N_(), [5] which won’t conflict with any definition of _(). However, you will need to teach your

message extraction program to look for translatable strings marked with N_(). pygettext and xpot both support this through the use of command line switches.

23.1.3.5. gettext() vs. lgettext()¶

In Python 2.4 the lgettext() family of functions were introduced. The intention of these functions is to provide an alternative which is more compliant with the

current implementation of GNU gettext. Unlike gettext(), which returns strings encoded with the same codeset used in the translation file, lgettext() will

return strings encoded with the preferred system encoding, as returned by locale.getpreferredencoding(). Also notice that Python 2.4 introduces new

functions to explicitly choose the codeset used in translated strings. If a codeset is explicitly set, even lgettext() will return translated strings in the requested

codeset, as would be expected in the GNU gettext implementation.

23.1.4. Acknowledgements¶

The following people contributed code, feedback, design suggestions, previous implementations, and valuable experience to the creation of this module:

• Peter Funk

• James Henstridge

• Juan David Ibáñez Palomar

• Marc-André Lemburg

• Martin von Löwis

• François Pinard

• Barry Warsaw

• Gustavo Niemeyer

Footnotes

[1]

The default locale directory is system dependent; for example, on RedHat Linux

it is /usr/share/locale, but on Solaris it is /usr/lib/locale. The

gettext module does not try to support these system dependent defaults;

instead its default is sys.prefix/share/locale. For this reason, it is always

best to call bindtextdomain() with an explicit absolute path at the start of

your application.

[2] See the footnote for bindtextdomain() above.

[3]
François Pinard has written a program called xpot which does a similar job. It is

available as part of his po-utils package at http ://po-utils.progiciels-bpi.ca/.

[4]

msgfmt.py is binary compatible with GNU msgfmt except that it provides a

simpler, all-Python implementation. With this and pygettext.py, you generally

won’t need to install the GNU gettext package to internationalize your Python

applications.

[5]
The choice of N_() here is totally arbitrary; it could have just as easily been

MarkThisStringForTranslation().

Table Of Contents

23.1. gettext — Multilingual internationalization services

• 23.1.1. GNU gettext API

23.1.2. Class-based API

• 23.1.2.1. The NullTranslations class

• 23.1.2.2. The GNUTranslations class

• 23.1.2.3. Solaris message catalog support

• 23.1.2.4. The Catalog constructor

23.1.3. Internationalizing your programs and modules

• 23.1.3.1. Localizing your module

• 23.1.3.2. Localizing your application

• 23.1.3.3. Changing languages on the fly

• 23.1.3.4. Deferred translations

• 23.1.3.5. gettext() vs. lgettext()

• 23.1.4. Acknowledgements

Previous topic

23. Internationalization

Next topic

23.2. locale — Internationalization services

This Page

• Show Source

Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 23. Internationalization »

© Copyright 1990-2010, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Feb 26, 2010. Created using Sphinx 0.6.3.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

	Navigation
	Navigation
	Navigation

	23.1. gettext — Multilingual internationalization services¶
	23.1.1. GNU gettext API¶
	23.1.2. Class-based API¶
	23.1.2.1. The NullTranslations class¶
	23.1.2.2. The GNUTranslations class¶
	23.1.2.3. Solaris message catalog support¶
	23.1.2.4. The Catalog constructor¶

	23.1.3. Internationalizing your programs and modules¶
	23.1.3.1. Localizing your module¶
	23.1.3.2. Localizing your application¶
	23.1.3.3. Changing languages on the fly¶
	23.1.3.4. Deferred translations¶
	23.1.3.5. gettext() vs. lgettext()¶

	23.1.4. Acknowledgements¶
	Table Of Contents
	Previous topic
	Next topic

	This Page
	Navigation

