
Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 17. Optional Operating System Services »

17.6. multiprocessing — Process-based “threading” interface¶

New in version 2.6.

17.6.1. Introduction¶

multiprocessing is a package that supports spawning processes using an API similar to the threading module. The multiprocessing package offers

both local and remote concurrency, effectively side-stepping the Global Interpreter Lock by using subprocesses instead of threads. Due to this, the

multiprocessing module allows the programmer to fully leverage multiple processors on a given machine. It runs on both Unix and Windows.

Warning

Some of this package’s functionality requires a functioning shared semaphore implementation on the host operating system. Without one, the

multiprocessing.synchronize module will be disabled, and attempts to import it will result in an ImportError. See issue 3770 for additional information.

Note

Functionality within this package requires that the __main__ method be importable by the children. This is covered in Programming guidelines however it is

worth pointing out here. This means that some examples, such as the multiprocessing.Pool examples will not work in the interactive interpreter. For

example:

>>> from multiprocessing import Pool

>>> p = Pool(5)

>>> def f(x):

... return x*x

...

>>> p.map(f, [1,2,3])

Process PoolWorker-1:

Process PoolWorker-2:

Process PoolWorker-3:

Traceback (most recent call last):

AttributeError: 'module' object has no attribute 'f'

AttributeError: 'module' object has no attribute 'f'

AttributeError: 'module' object has no attribute 'f'

(If you try this it will actually output three full tracebacks interleaved in a semi-random fashion, and then you may have to stop the master process somehow.)

17.6.1.1. The Process class¶

In multiprocessing, processes are spawned by creating a Process object and then calling its start() method. Process follows the API of

threading.Thread. A trivial example of a multiprocess program is

from multiprocessing import Process

def f(name):

 print 'hello', name

if __name__ == '__main__':

 p = Process(target=f, args=('bob',))

 p.start()

 p.join()

To show the individual process IDs involved, here is an expanded example:

from multiprocessing import Process

import os

def info(title):

 print title

http://bugs.python.org/issue3770

 print 'module name:', __name__

 print 'parent process:', os.getppid()

 print 'process id:', os.getpid()

def f(name):

 info('function f')

 print 'hello', name

if __name__ == '__main__':

 info('main line')

 p = Process(target=f, args=('bob',))

 p.start()

 p.join()

For an explanation of why (on Windows) the if __name__ == '__main__' part is necessary, see Programming guidelines.

17.6.1.2. Exchanging objects between processes¶

multiprocessing supports two types of communication channel between processes:

Queues

The Queue class is a near clone of Queue.Queue. For example:

from multiprocessing import Process, Queue

def f(q):

 q.put([42, None, 'hello'])

if __name__ == '__main__':

 q = Queue()

 p = Process(target=f, args=(q,))

 p.start()

 print q.get() # prints "[42, None, 'hello']"

 p.join()

Queues are thread and process safe.

Pipes

The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex (two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):

 conn.send([42, None, 'hello'])

 conn.close()

if __name__ == '__main__':

 parent_conn, child_conn = Pipe()

 p = Process(target=f, args=(child_conn,))

 p.start()

 print parent_conn.recv() # prints "[42, None, 'hello']"

 p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection object has send() and recv() methods (among

others). Note that data in a pipe may become corrupted if two processes (or threads) try to read from or write to the same end of the pipe at the same time.

Of course there is no risk of corruption from processes using different ends of the pipe at the same time.

17.6.1.3. Synchronization between processes¶

multiprocessing contains equivalents of all the synchronization primitives from threading. For instance one can use a lock to ensure that only one process

prints to standard output at a time:

from multiprocessing import Process, Lock

def f(l, i):

 l.acquire()

 print 'hello world', i

 l.release()

if __name__ == '__main__':

 lock = Lock()

 for num in range(10):

 Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all mixed up.

17.6.1.4. Sharing state between processes¶

As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using

multiple processes.

However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.

Shared memory

Data can be stored in a shared memory map using Value or Array. For example, the following code

from multiprocessing import Process, Value, Array

def f(n, a):

 n.value = 3.1415927

 for i in range(len(a)):

 a[i] = -a[i]

if __name__ == '__main__':

 num = Value('d', 0.0)

 arr = Array('i', range(10))

 p = Process(target=f, args=(num, arr))

 p.start()

 p.join()

 print num.value

 print arr[:]

will print

3.1415927

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The 'd' and 'i' arguments used when creating num and arr are typecodes of the kind used by the array module: 'd' indicates a double precision

float and 'i' indicates a signed integer. These shared objects will be process and thread safe.

For more flexibility in using shared memory one can use the multiprocessing.sharedctypes module which supports the creation of arbitrary ctypes

objects allocated from shared memory.

Server process

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using

proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event,

Queue, Value and Array. For example,

from multiprocessing import Process, Manager

def f(d, l):

 d[1] = '1'

 d['2'] = 2

 d[0.25] = None

 l.reverse()

if __name__ == '__main__':

 manager = Manager()

 d = manager.dict()

 l = manager.list(range(10))

 p = Process(target=f, args=(d, l))

 p.start()

 p.join()

 print d

 print l

will print

{0.25: None, 1: '1', '2': 2}

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process managers are more flexible than using shared memory objects because they can be made to support arbitrary object types. Also, a single

manager can be shared by processes on different computers over a network. They are, however, slower than using shared memory.

17.6.1.5. Using a pool of workers¶

The Pool class represents a pool of worker processes. It has methods which allows tasks to be offloaded to the worker processes in a few different ways.

For example:

from multiprocessing import Pool

def f(x):

 return x*x

if __name__ == '__main__':

 pool = Pool(processes=4) # start 4 worker processes

 result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously

 print result.get(timeout=1) # prints "100" unless your computer is *very* slow

 print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"

17.6.2. Reference¶

The multiprocessing package mostly replicates the API of the threading module.

17.6.2.1. Process and exceptions¶

class multiprocessing.Process([group[, target[, name[, args[, kwargs]]]]])¶

Process objects represent activity that is run in a separate process. The Process class has equivalents of all the methods of threading.Thread.

The constructor should always be called with keyword arguments. group should always be None; it exists solely for compatibility with threading.Thread.

target is the callable object to be invoked by the run() method. It defaults to None, meaning nothing is called. name is the process name. By default, a unique

name is constructed of the form ‘Process-N1:N2:...:Nk‘ where N1,N2,...,Nk is a sequence of integers whose length is determined by the generation of the process.

args is the argument tuple for the target invocation. kwargs is a dictionary of keyword arguments for the target invocation. By default, no arguments are passed to

target.

If a subclass overrides the constructor, it must make sure it invokes the base class constructor (Process.__init__()) before doing anything else to the

process.

run()¶

Method representing the process’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed to the object’s constructor as the target argument, if

any, with sequential and keyword arguments taken from the args and kwargs arguments, respectively.

start()¶

Start the process’s activity.

This must be called at most once per process object. It arranges for the object’s run() method to be invoked in a separate process.

join([timeout])¶

Block the calling thread until the process whose join() method is called terminates or until the optional timeout occurs.

If timeout is None then there is no timeout.

A process can be joined many times.

A process cannot join itself because this would cause a deadlock. It is an error to attempt to join a process before it has been started.

name¶

The process’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple processes may be given the same name. The initial name is set by the

constructor.

is_alive()¶

Return whether the process is alive.

Roughly, a process object is alive from the moment the start() method returns until the child process terminates.

daemon¶

The process’s daemon flag, a Boolean value. This must be set before start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child processes.

Note that a daemonic process is not allowed to create child processes. Otherwise a daemonic process would leave its children orphaned if it gets terminated

when its parent process exits. Additionally, these are not Unix daemons or services, they are normal processes that will be terminated (and not joined) if

non-dameonic processes have exited.

In addition to the Threading.Thread API, Process objects also support the following attributes and methods:

pid¶

Return the process ID. Before the process is spawned, this will be None.

exitcode¶

The child’s exit code. This will be None if the process has not yet terminated. A negative value -N indicates that the child was terminated by signal N.

authkey¶

The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a random string using os.random().

When a Process object is created, it will inherit the authentication key of its parent process, although this may be changed by setting authkey to another byte

string.

See Authentication keys.

terminate()¶

Terminate the process. On Unix this is done using the SIGTERM signal; on Windows TerminateProcess() is used. Note that exit handlers and finally

clauses, etc., will not be executed.

Note that descendant processes of the process will not be terminated – they will simply become orphaned.

Warning

If this method is used when the associated process is using a pipe or queue then the pipe or queue is liable to become corrupted and may become unusable by

other process. Similarly, if the process has acquired a lock or semaphore etc. then terminating it is liable to cause other processes to deadlock.

Note that the start(), join(), is_alive() and exit_code methods should only be called by the process that created the process object.

Example usage of some of the methods of Process:

>>> import multiprocessing, time, signal

>>> p = multiprocessing.Process(target=time.sleep, args=(1000,))

>>> print p, p.is_alive()

<Process(Process-1, initial)> False

>>> p.start()

>>> print p, p.is_alive()

<Process(Process-1, started)> True

>>> p.terminate()

>>> time.sleep(0.1)

>>> print p, p.is_alive()

<Process(Process-1, stopped[SIGTERM])> False

>>> p.exitcode == -signal.SIGTERM

True

exception multiprocessing.BufferTooShort¶

Exception raised by Connection.recv_bytes_into() when the supplied buffer object is too small for the message read.

If e is an instance of BufferTooShort then e.args[0] will give the message as a byte string.

17.6.2.2. Pipes and Queues¶

When using multiple processes, one generally uses message passing for communication between processes and avoids having to use any synchronization

primitives like locks.

For passing messages one can use Pipe() (for a connection between two processes) or a queue (which allows multiple producers and consumers).

The Queue and JoinableQueue types are multi-producer, multi-consumer FIFO queues modelled on the Queue.Queue class in the standard library. They

differ in that Queue lacks the task_done() and join() methods introduced into Python 2.5’s Queue.Queue class.

If you use JoinableQueue then you must call JoinableQueue.task_done() for each task removed from the queue or else the semaphore used to count

the number of unfinished tasks may eventually overflow raising an exception.

Note that one can also create a shared queue by using a manager object – see Managers.

Note

multiprocessing uses the usual Queue.Empty and Queue.Full exceptions to signal a timeout. They are not available in the multiprocessing

namespace so you need to import them from Queue.

Warning

If a process is killed using Process.terminate() or os.kill() while it is trying to use a Queue, then the data in the queue is likely to become corrupted.

This may cause any other processes to get an exception when it tries to use the queue later on.

Warning

As mentioned above, if a child process has put items on a queue (and it has not used JoinableQueue.cancel_join_thread()), then that process will not

terminate until all buffered items have been flushed to the pipe.

This means that if you try joining that process you may get a deadlock unless you are sure that all items which have been put on the queue have been consumed.

Similarly, if the child process is non-daemonic then the parent process may hang on exit when it tries to join all its non-daemonic children.

Note that a queue created using a manager does not have this issue. See Programming guidelines.

For an example of the usage of queues for interprocess communication see Examples.

multiprocessing.Pipe([duplex])¶

Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.

If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is unidirectional: conn1 can only be used for receiving messages

and conn2 can only be used for sending messages.

class multiprocessing.Queue([maxsize])¶

Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first puts an item on the queue a feeder thread is

started which transfers objects from a buffer into the pipe.

The usual Queue.Empty and Queue.Full exceptions from the standard library’s Queue module are raised to signal timeouts.

Queue implements all the methods of Queue.Queue except for task_done() and join().

qsize()¶

Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this number is not reliable.

Note that this may raise NotImplementedError on Unix platforms like Mac OS X where sem_getvalue() is not implemented.

empty()¶
Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.

full()¶
Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.

put(item[, block[, timeout]])¶
Put item into the queue. If the optional argument block is True (the default) and timeout is None (the default), block if necessary until a free slot is available. If

timeout is a positive number, it blocks at most timeout seconds and raises the Queue.Full exception if no free slot was available within that time. Otherwise

(block is False), put an item on the queue if a free slot is immediately available, else raise the Queue.Full exception (timeout is ignored in that case).

put_nowait(item)¶
Equivalent to put(item, False).

get([block[, timeout]])¶
Remove and return an item from the queue. If optional args block is True (the default) and timeout is None (the default), block if necessary until an item is

available. If timeout is a positive number, it blocks at most timeout seconds and raises the Queue.Empty exception if no item was available within that time.

Otherwise (block is False), return an item if one is immediately available, else raise the Queue.Empty exception (timeout is ignored in that case).

get_nowait()¶
get_no_wait()¶
Equivalent to get(False).

multiprocessing.Queue has a few additional methods not found in Queue.Queue. These methods are usually unnecessary for most code:

close()¶
Indicate that no more data will be put on this queue by the current process. The background thread will quit once it has flushed all buffered data to the pipe. This

is called automatically when the queue is garbage collected.

join_thread()¶

Join the background thread. This can only be used after close() has been called. It blocks until the background thread exits, ensuring that all data in the buffer

has been flushed to the pipe.

By default if a process is not the creator of the queue then on exit it will attempt to join the queue’s background thread. The process can call

cancel_join_thread() to make join_thread() do nothing.

cancel_join_thread()¶
Prevent join_thread() from blocking. In particular, this prevents the background thread from being joined automatically when the process exits – see

join_thread().

class multiprocessing.JoinableQueue([maxsize])¶

JoinableQueue, a Queue subclass, is a queue which additionally has task_done() and join() methods.

task_done()¶

Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get() used to fetch a task, a subsequent call to

task_done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had

been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

join()¶

Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer thread calls task_done() to

indicate that the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

17.6.2.3. Miscellaneous¶

multiprocessing.active_children()¶

Return list of all live children of the current process.

Calling this has the side affect of “joining” any processes which have already finished.

multiprocessing.cpu_count()¶
Return the number of CPUs in the system. May raise NotImplementedError.

multiprocessing.current_process()¶

Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

multiprocessing.freeze_support()¶

Add support for when a program which uses multiprocessing has been frozen to produce a Windows executable. (Has been tested with py2exe, PyInstaller

and cx_Freeze.)

One needs to call this function straight after the if __name__ == '__main__' line of the main module. For example:

from multiprocessing import Process, freeze_support

def f():

 print 'hello world!'

if __name__ == '__main__':

 freeze_support()

 Process(target=f).start()

If the freeze_support() line is omitted then trying to run the frozen executable will raise RuntimeError.

If the module is being run normally by the Python interpreter then freeze_support() has no effect.

multiprocessing.set_executable()¶

Sets the path of the Python interpreter to use when starting a child process. (By default sys.executable is used). Embedders will probably need to do some

thing like

setExecutable(os.path.join(sys.exec_prefix, 'pythonw.exe'))

before they can create child processes. (Windows only)

Note

multiprocessing contains no analogues of threading.active_count(), threading.enumerate(), threading.settrace(),

threading.setprofile(), threading.Timer, or threading.local.

17.6.2.4. Connection Objects¶

Connection objects allow the sending and receiving of picklable objects or strings. They can be thought of as message oriented connected sockets.

Connection objects usually created using Pipe() – see also Listeners and Clients.

class multiprocessing.Connection¶

send(obj)¶

Send an object to the other end of the connection which should be read using recv().

The object must be picklable.

recv()¶
Return an object sent from the other end of the connection using send(). Raises EOFError if there is nothing left to receive and the other end was closed.

fileno()¶
Returns the file descriptor or handle used by the connection.

close()¶

Close the connection.

This is called automatically when the connection is garbage collected.

poll([timeout])¶

Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If timeout is a number then this specifies the maximum time in seconds to block. If timeout is None then

an infinite timeout is used.

send_bytes(buffer[, offset[, size]])¶

Send byte data from an object supporting the buffer interface as a complete message.

If offset is given then data is read from that position in buffer. If size is given then that many bytes will be read from buffer.

recv_bytes([maxlength])¶

Return a complete message of byte data sent from the other end of the connection as a string. Raises EOFError if there is nothing left to receive and the other

end has closed.

If maxlength is specified and the message is longer than maxlength then IOError is raised and the connection will no longer be readable.

recv_bytes_into(buffer[, offset])¶

Read into buffer a complete message of byte data sent from the other end of the connection and return the number of bytes in the message. Raises EOFError if

there is nothing left to receive and the other end was closed.

buffer must be an object satisfying the writable buffer interface. If offset is given then the message will be written into the buffer from that position. Offset must be

a non-negative integer less than the length of buffer (in bytes).

If the buffer is too short then a BufferTooShort exception is raised and the complete message is available as e.args[0] where e is the exception instance.

For example:

>>> from multiprocessing import Pipe

>>> a, b = Pipe()

>>> a.send([1, 'hello', None])

>>> b.recv()

[1, 'hello', None]

>>> b.send_bytes('thank you')

>>> a.recv_bytes()

'thank you'

>>> import array

>>> arr1 = array.array('i', range(5))

>>> arr2 = array.array('i', [0] * 10)

>>> a.send_bytes(arr1)

>>> count = b.recv_bytes_into(arr2)

>>> assert count == len(arr1) * arr1.itemsize

>>> arr2

array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])

Warning

The Connection.recv() method automatically unpickles the data it receives, which can be a security risk unless you can trust the process which sent the

message.

Therefore, unless the connection object was produced using Pipe() you should only use the recv() and send() methods after performing some sort of

authentication. See Authentication keys.

Warning

If a process is killed while it is trying to read or write to a pipe then the data in the pipe is likely to become corrupted, because it may become impossible to be

sure where the message boundaries lie.

17.6.2.5. Synchronization primitives¶

Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multithreaded program. See the documentation for

threading module.

Note that one can also create synchronization primitives by using a manager object – see Managers.

class multiprocessing.BoundedSemaphore([value])¶

A bounded semaphore object: a clone of threading.BoundedSemaphore.

(On Mac OS X this is indistinguishable from Semaphore because sem_getvalue() is not implemented on that platform).

class multiprocessing.Condition([lock])¶

A condition variable: a clone of threading.Condition.

If lock is specified then it should be a Lock or RLock object from multiprocessing.

class multiprocessing.Event¶

A clone of threading.Event.

class multiprocessing.Lock¶

A non-recursive lock object: a clone of threading.Lock.

class multiprocessing.RLock¶

A recursive lock object: a clone of threading.RLock.

class multiprocessing.Semaphore([value])¶
A bounded semaphore object: a clone of threading.Semaphore.

Note

The acquire() method of BoundedSemaphore, Lock, RLock and Semaphore has a timeout parameter not supported by the equivalents in threading.

The signature is acquire(block=True, timeout=None) with keyword parameters being acceptable. If block is True and timeout is not None then it

specifies a timeout in seconds. If block is False then timeout is ignored.

Note

On OS/X sem_timedwait is unsupported, so timeout arguments for the aforementioned acquire() methods will be ignored on OS/X.

Note

If the SIGINT signal generated by Ctrl-C arrives while the main thread is blocked by a call to BoundedSemaphore.acquire(), Lock.acquire(),

RLock.acquire(), Semaphore.acquire(), Condition.acquire() or Condition.wait() then the call will be immediately interrupted and

KeyboardInterrupt will be raised.

This differs from the behaviour of threading where SIGINT will be ignored while the equivalent blocking calls are in progress.

17.6.2.6. Shared ctypes Objects¶

It is possible to create shared objects using shared memory which can be inherited by child processes.

multiprocessing.Value(typecode_or_type, *args[, lock])¶

Return a ctypes object allocated from shared memory. By default the return value is actually a synchronized wrapper for the object.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character typecode of the kind used by the array module. *args

is passed on to the constructor for the type.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a Lock or RLock object then that will be used to

synchronize access to the value. If lock is False then access to the returned object will not be automatically protected by a lock, so it will not necessarily be

“process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.Array(typecode_or_type, size_or_initializer, *, lock=True)¶

Return a ctypes array allocated from shared memory. By default the return value is actually a synchronized wrapper for the array.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one character typecode of the kind used by the array

module. If size_or_initializer is an integer, then it determines the length of the array, and the array will be initially zeroed. Otherwise, size_or_initializer is a

sequence which is used to initialize the array and whose length determines the length of the array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a Lock or RLock object then that will be used to

synchronize access to the value. If lock is False then access to the returned object will not be automatically protected by a lock, so it will not necessarily be

“process-safe”.

Note that lock is a keyword only argument.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and retrieve strings.

17.6.2.6.1. The multiprocessing.sharedctypes module¶

The multiprocessing.sharedctypes module provides functions for allocating ctypes objects from shared memory which can be inherited by child

processes.

Note

Although it is possible to store a pointer in shared memory remember that this will refer to a location in the address space of a specific process. However, the

pointer is quite likely to be invalid in the context of a second process and trying to dereference the pointer from the second process may cause a crash.

multiprocessing.sharedctypes.RawArray(typecode_or_type, size_or_initializer)¶

Return a ctypes array allocated from shared memory.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one character typecode of the kind used by the array

module. If size_or_initializer is an integer then it determines the length of the array, and the array will be initially zeroed. Otherwise size_or_initializer is a

sequence which is used to initialize the array and whose length determines the length of the array.

Note that setting and getting an element is potentially non-atomic – use Array() instead to make sure that access is automatically synchronized using a lock.

multiprocessing.sharedctypes.RawValue(typecode_or_type, *args)¶

Return a ctypes object allocated from shared memory.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character typecode of the kind used by the array module. *args

is passed on to the constructor for the type.

Note that setting and getting the value is potentially non-atomic – use Value() instead to make sure that access is automatically synchronized using a lock.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and retrieve strings – see documentation for ctypes.

multiprocessing.sharedctypes.Array(typecode_or_type, size_or_initializer, *args[, lock])¶

The same as RawArray() except that depending on the value of lock a process-safe synchronization wrapper may be returned instead of a raw ctypes array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a Lock or RLock object then that will be used to

synchronize access to the value. If lock is False then access to the returned object will not be automatically protected by a lock, so it will not necessarily be

“process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.Value(typecode_or_type, *args[, lock])¶

The same as RawValue() except that depending on the value of lock a process-safe synchronization wrapper may be returned instead of a raw ctypes object.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a Lock or RLock object then that will be used to

synchronize access to the value. If lock is False then access to the returned object will not be automatically protected by a lock, so it will not necessarily be

“process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.copy(obj)¶
Return a ctypes object allocated from shared memory which is a copy of the ctypes object obj.

multiprocessing.sharedctypes.synchronized(obj[, lock])¶

Return a process-safe wrapper object for a ctypes object which uses lock to synchronize access. If lock is None (the default) then a multiprocessing.RLock

object is created automatically.

A synchronized wrapper will have two methods in addition to those of the object it wraps: get_obj() returns the wrapped object and get_lock() returns the

lock object used for synchronization.

Note that accessing the ctypes object through the wrapper can be a lot slower than accessing the raw ctypes object.

The table below compares the syntax for creating shared ctypes objects from shared memory with the normal ctypes syntax. (In the table MyStruct is some

subclass of ctypes.Structure.)

ctypes sharedctypes using type sharedctypes using typecode

c_double(2.4) RawValue(c_double, 2.4) RawValue(‘d’, 2.4)

MyStruct(4, 6) RawValue(MyStruct, 4, 6)

(c_short * 7)() RawArray(c_short, 7) RawArray(‘h’, 7)

(c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray(‘i’, (9, 2, 8))

Below is an example where a number of ctypes objects are modified by a child process:

from multiprocessing import Process, Lock

from multiprocessing.sharedctypes import Value, Array

from ctypes import Structure, c_double

class Point(Structure):

 fields = [('x', c_double), ('y', c_double)]

def modify(n, x, s, A):

 n.value **= 2

 x.value **= 2

 s.value = s.value.upper()

 for a in A:

 a.x **= 2

 a.y **= 2

if __name__ == '__main__':

 lock = Lock()

 n = Value('i', 7)

 x = Value(c_double, 1.0/3.0, lock=False)

 s = Array('c', 'hello world', lock=lock)

 A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

 p = Process(target=modify, args=(n, x, s, A))

 p.start()

 p.join()

 print n.value

 print x.value

 print s.value

 print [(a.x, a.y) for a in A]

The results printed are

49

0.1111111111111111

HELLO WORLD

[(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]

17.6.2.7. Managers¶

Managers provide a way to create data which can be shared between different processes. A manager object controls a server process which manages shared

objects. Other processes can access the shared objects by using proxies.

multiprocessing.Manager()¶
Returns a started SyncManager object which can be used for sharing objects between processes. The returned manager object corresponds to a spawned child

process and has methods which will create shared objects and return corresponding proxies.

Manager processes will be shutdown as soon as they are garbage collected or their parent process exits. The manager classes are defined in the

multiprocessing.managers module:

class multiprocessing.managers.BaseManager([address[, authkey]])¶

Create a BaseManager object.

Once created one should call start() or serve_forever() to ensure that the manager object refers to a started manager process.

address is the address on which the manager process listens for new connections. If address is None then an arbitrary one is chosen.

authkey is the authentication key which will be used to check the validity of incoming connections to the server process. If authkey is None then

current_process().authkey. Otherwise authkey is used and it must be a string.

start()¶
Start a subprocess to start the manager.

serve_forever()¶
Run the server in the current process.

get_server()¶

Returns a Server object which represents the actual server under the control of the Manager. The Server object supports the serve_forever() method:

>>> from multiprocessing.managers import BaseManager

>>> manager = BaseManager(address=('', 50000), authkey='abc')

>>> server = manager.get_server()

>>> server.serve_forever()

Server additionally has an address attribute.

connect()¶

Connect a local manager object to a remote manager process:

>>> from multiprocessing.managers import BaseManager

>>> m = BaseManager(address=('127.0.0.1', 5000), authkey='abc')

>>> m.connect()

shutdown()¶

Stop the process used by the manager. This is only available if start() has been used to start the server process.

This can be called multiple times.

register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])¶

A classmethod which can be used for registering a type or callable with the manager class.

typeid is a “type identifier” which is used to identify a particular type of shared object. This must be a string.

callable is a callable used for creating objects for this type identifier. If a manager instance will be created using the from_address() classmethod or if the

create_method argument is False then this can be left as None.

proxytype is a subclass of BaseProxy which is used to create proxies for shared objects with this typeid. If None then a proxy class is created automatically.

exposed is used to specify a sequence of method names which proxies for this typeid should be allowed to access using BaseProxy._callMethod(). (If

exposed is None then proxytype._exposed_ is used instead if it exists.) In the case where no exposed list is specified, all “public methods” of the shared

object will be accessible. (Here a “public method” means any attribute which has a __call__() method and whose name does not begin with '_'.)

method_to_typeid is a mapping used to specify the return type of those exposed methods which should return a proxy. It maps method names to typeid strings. (If

method_to_typeid is None then proxytype._method_to_typeid_ is used instead if it exists.) If a method’s name is not a key of this mapping or if the

mapping is None then the object returned by the method will be copied by value.

create_method determines whether a method should be created with name typeid which can be used to tell the server process to create a new shared object and

return a proxy for it. By default it is True.

BaseManager instances also have one read-only property:

address¶

The address used by the manager.

class multiprocessing.managers.SyncManager¶

A subclass of BaseManager which can be used for the synchronization of processes. Objects of this type are returned by multiprocessing.Manager().

It also supports creation of shared lists and dictionaries.

BoundedSemaphore([value])¶
Create a shared threading.BoundedSemaphore object and return a proxy for it.

Condition([lock])¶

Create a shared threading.Condition object and return a proxy for it.

If lock is supplied then it should be a proxy for a threading.Lock or threading.RLock object.

Event()¶
Create a shared threading.Event object and return a proxy for it.

Lock()¶
Create a shared threading.Lock object and return a proxy for it.

Namespace()¶
Create a shared Namespace object and return a proxy for it.

Queue([maxsize])¶
Create a shared Queue.Queue object and return a proxy for it.

RLock()¶
Create a shared threading.RLock object and return a proxy for it.

Semaphore([value])¶
Create a shared threading.Semaphore object and return a proxy for it.

Array(typecode, sequence)¶
Create an array and return a proxy for it.

Value(typecode, value)¶
Create an object with a writable value attribute and return a proxy for it.

dict()¶
dict(mapping)
dict(sequence)
Create a shared dict object and return a proxy for it.

list()¶
list(sequence)
Create a shared list object and return a proxy for it.

17.6.2.7.1. Namespace objects¶

A namespace object has no public methods, but does have writable attributes. Its representation shows the values of its attributes.

However, when using a proxy for a namespace object, an attribute beginning with '_' will be an attribute of the proxy and not an attribute of the referent:

>>> manager = multiprocessing.Manager()

>>> Global = manager.Namespace()

>>> Global.x = 10

>>> Global.y = 'hello'

>>> Global._z = 12.3 # this is an attribute of the proxy

>>> print Global

Namespace(x=10, y='hello')

17.6.2.7.2. Customized managers¶

To create one’s own manager, one creates a subclass of BaseManager and use the register() classmethod to register new types or callables with the

manager class. For example:

from multiprocessing.managers import BaseManager

class MathsClass(object):

 def add(self, x, y):

 return x + y

 def mul(self, x, y):

 return x * y

class MyManager(BaseManager):

 pass

MyManager.register('Maths', MathsClass)

if __name__ == '__main__':

 manager = MyManager()

 manager.start()

 maths = manager.Maths()

 print maths.add(4, 3) # prints 7

 print maths.mul(7, 8) # prints 56

17.6.2.7.3. Using a remote manager¶

It is possible to run a manager server on one machine and have clients use it from other machines (assuming that the firewalls involved allow it).

Running the following commands creates a server for a single shared queue which remote clients can access:

>>> from multiprocessing.managers import BaseManager

>>> import Queue

>>> queue = Queue.Queue()

>>> class QueueManager(BaseManager): pass

>>> QueueManager.register('get_queue', callable=lambda:queue)

>>> m = QueueManager(address=('', 50000), authkey='abracadabra')

>>> s = m.get_server()

>>> s.serve_forever()

One client can access the server as follows:

>>> from multiprocessing.managers import BaseManager

>>> class QueueManager(BaseManager): pass

>>> QueueManager.register('get_queue')

>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')

>>> m.connect()

>>> queue = m.get_queue()

>>> queue.put('hello')

Another client can also use it:

>>> from multiprocessing.managers import BaseManager

>>> class QueueManager(BaseManager): pass

>>> QueueManager.register('get_queue')

>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')

>>> m.connect()

>>> queue = m.get_queue()

>>> queue.get()

'hello'

Local processes can also access that queue, using the code from above on the client to access it remotely:

>>> from multiprocessing import Process, Queue

>>> from multiprocessing.managers import BaseManager

>>> class Worker(Process):

... def __init__(self, q):

... self.q = q

... super(Worker, self).__init__()

... def run(self):

... self.q.put('local hello')

...

>>> queue = Queue()

>>> w = Worker(queue)

>>> w.start()

>>> class QueueManager(BaseManager): pass

...

>>> QueueManager.register('get_queue', callable=lambda: queue)

>>> m = QueueManager(address=('', 50000), authkey='abracadabra')

>>> s = m.get_server()

>>> s.serve_forever()

17.6.2.8. Proxy Objects¶

A proxy is an object which refers to a shared object which lives (presumably) in a different process. The shared object is said to be the referent of the proxy.

Multiple proxy objects may have the same referent.

A proxy object has methods which invoke corresponding methods of its referent (although not every method of the referent will necessarily be available through

the proxy). A proxy can usually be used in most of the same ways that its referent can:

>>> from multiprocessing import Manager

>>> manager = Manager()

>>> l = manager.list([i*i for i in range(10)])

>>> print l

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> print repr(l)

<ListProxy object, typeid 'list' at 0x...>

>>> l[4]

16

>>> l[2:5]

[4, 9, 16]

Notice that applying str() to a proxy will return the representation of the referent, whereas applying repr() will return the representation of the proxy.

An important feature of proxy objects is that they are picklable so they can be passed between processes. Note, however, that if a proxy is sent to the

corresponding manager’s process then unpickling it will produce the referent itself. This means, for example, that one shared object can contain a second:

>>> a = manager.list()

>>> b = manager.list()

>>> a.append(b) # referent of a now contains referent of b

>>> print a, b

[[]] []

>>> b.append('hello')

>>> print a, b

[['hello']] ['hello']

Note

The proxy types in multiprocessing do nothing to support comparisons by value. So, for instance, we have:

>>> manager.list([1,2,3]) == [1,2,3]

False

One should just use a copy of the referent instead when making comparisons.

class multiprocessing.managers.BaseProxy¶

Proxy objects are instances of subclasses of BaseProxy.

_callmethod(methodname[, args[, kwds]])¶

Call and return the result of a method of the proxy’s referent.

If proxy is a proxy whose referent is obj then the expression

proxy._callmethod(methodname, args, kwds)

will evaluate the expression

getattr(obj, methodname)(*args, **kwds)

in the manager’s process.

The returned value will be a copy of the result of the call or a proxy to a new shared object – see documentation for the method_to_typeid argument of

BaseManager.register().

If an exception is raised by the call, then then is re-raised by _callmethod(). If some other exception is raised in the manager’s process then this is converted

into a RemoteError exception and is raised by _callmethod().

Note in particular that an exception will be raised if methodname has not been exposed

An example of the usage of _callmethod():

>>> l = manager.list(range(10))

>>> l._callmethod('__len__')

10

>>> l._callmethod('__getslice__', (2, 7)) # equiv to `l[2:7]`

[2, 3, 4, 5, 6]

>>> l._callmethod('__getitem__', (20,)) # equiv to `l[20]`

...

IndexError: list index out of range

_getvalue()¶

Return a copy of the referent.

If the referent is unpicklable then this will raise an exception.

__repr__()¶
Return a representation of the proxy object.

__str__()¶
Return the representation of the referent.

17.6.2.8.1. Cleanup¶

A proxy object uses a weakref callback so that when it gets garbage collected it deregisters itself from the manager which owns its referent.

A shared object gets deleted from the manager process when there are no longer any proxies referring to it.

17.6.2.9. Process Pools¶

One can create a pool of processes which will carry out tasks submitted to it with the Pool class.

class multiprocessing.Pool([processes[, initializer[, initargs]]])¶

A process pool object which controls a pool of worker processes to which jobs can be submitted. It supports asynchronous results with timeouts and callbacks

and has a parallel map implementation.

processes is the number of worker processes to use. If processes is None then the number returned by cpu_count() is used. If initializer is not None then

each worker process will call initializer(*initargs) when it starts.

apply(func[, args[, kwds]])¶
Equivalent of the apply() built-in function. It blocks till the result is ready. Given this blocks, apply_async() is better suited for performing work in parallel.

Additionally, the passed in function is only executed in one of the workers of the pool.

apply_async(func[, args[, kwds[, callback]]])¶

A variant of the apply() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result becomes ready callback is applied to it (unless the call

failed). callback should complete immediately since otherwise the thread which handles the results will get blocked.

map(func, iterable[, chunksize])¶

A parallel equivalent of the map() built-in function (it supports only one iterable argument though). It blocks till the result is ready.

This method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. The (approximate) size of these chunks can be

specified by setting chunksize to a positive integer.

map_async(func, iterable[, chunksize[, callback]])¶

A variant of the map() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result becomes ready callback is applied to it (unless the call

failed). callback should complete immediately since otherwise the thread which handles the results will get blocked.

imap(func, iterable[, chunksize])¶

An equivalent of itertools.imap().

The chunksize argument is the same as the one used by the map() method. For very long iterables using a large value for chunksize can make make the job

complete much faster than using the default value of 1.

Also if chunksize is 1 then the next() method of the iterator returned by the imap() method has an optional timeout parameter: next(timeout) will raise

multiprocessing.TimeoutError if the result cannot be returned within timeout seconds.

imap_unordered(func, iterable[, chunksize])¶
The same as imap() except that the ordering of the results from the returned iterator should be considered arbitrary. (Only when there is only one worker

process is the order guaranteed to be “correct”.)

close()¶
Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed the worker processes will exit.

terminate()¶
Stops the worker processes immediately without completing outstanding work. When the pool object is garbage collected terminate() will be called

immediately.

join()¶
Wait for the worker processes to exit. One must call close() or terminate() before using join().

class multiprocessing.pool.AsyncResult¶

The class of the result returned by Pool.apply_async() and Pool.map_async().

get([timeout])¶
Return the result when it arrives. If timeout is not None and the result does not arrive within timeout seconds then multiprocessing.TimeoutError is

raised. If the remote call raised an exception then that exception will be reraised by get().

wait([timeout])¶
Wait until the result is available or until timeout seconds pass.

ready()¶
Return whether the call has completed.

successful()¶
Return whether the call completed without raising an exception. Will raise AssertionError if the result is not ready.

The following example demonstrates the use of a pool:

from multiprocessing import Pool

def f(x):

 return x*x

if __name__ == '__main__':

 pool = Pool(processes=4) # start 4 worker processes

 result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously

 print result.get(timeout=1) # prints "100" unless your computer is *very* slow

 print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"

 it = pool.imap(f, range(10))

 print it.next() # prints "0"

 print it.next() # prints "1"

 print it.next(timeout=1) # prints "4" unless your computer is *very* slow

 import time

 result = pool.apply_async(time.sleep, (10,))

 print result.get(timeout=1) # raises TimeoutError

17.6.2.10. Listeners and Clients¶

Usually message passing between processes is done using queues or by using Connection objects returned by Pipe().

However, the multiprocessing.connection module allows some extra flexibility. It basically gives a high level message oriented API for dealing with

sockets or Windows named pipes, and also has support for digest authentication using the hmac module.

multiprocessing.connection.deliver_challenge(connection, authkey)¶

Send a randomly generated message to the other end of the connection and wait for a reply.

If the reply matches the digest of the message using authkey as the key then a welcome message is sent to the other end of the connection. Otherwise

AuthenticationError is raised.

multiprocessing.connection.answerChallenge(connection, authkey)¶

Receive a message, calculate the digest of the message using authkey as the key, and then send the digest back.

If a welcome message is not received, then AuthenticationError is raised.

multiprocessing.connection.Client(address[, family[, authenticate[, authkey]]])¶

Attempt to set up a connection to the listener which is using address address, returning a Connection.

The type of the connection is determined by family argument, but this can generally be omitted since it can usually be inferred from the format of address. (See

Address Formats)

If authenticate is True or authkey is a string then digest authentication is used. The key used for authentication will be either authkey or

current_process().authkey) if authkey is None. If authentication fails then AuthenticationError is raised. See Authentication keys.

class multiprocessing.connection.Listener([address[, family[, backlog[, authenticate[, authkey]]]]])¶

A wrapper for a bound socket or Windows named pipe which is ‘listening’ for connections.

address is the address to be used by the bound socket or named pipe of the listener object.

Note

If an address of ‘0.0.0.0’ is used, the address will not be a connectable end point on Windows. If you require a connectable end-point, you should use ‘127.0.0.1’.

family is the type of socket (or named pipe) to use. This can be one of the strings 'AF_INET' (for a TCP socket), 'AF_UNIX' (for a Unix domain socket) or

'AF_PIPE' (for a Windows named pipe). Of these only the first is guaranteed to be available. If family is None then the family is inferred from the format of

address. If address is also None then a default is chosen. This default is the family which is assumed to be the fastest available. See Address Formats. Note that

if family is 'AF_UNIX' and address is None then the socket will be created in a private temporary directory created using tempfile.mkstemp().

If the listener object uses a socket then backlog (1 by default) is passed to the listen() method of the socket once it has been bound.

If authenticate is True (False by default) or authkey is not None then digest authentication is used.

If authkey is a string then it will be used as the authentication key; otherwise it must be None.

If authkey is None and authenticate is True then current_process().authkey is used as the authentication key. If authkey is None and authenticate is

False then no authentication is done. If authentication fails then AuthenticationError is raised. See Authentication keys.

accept()¶
Accept a connection on the bound socket or named pipe of the listener object and return a Connection object. If authentication is attempted and fails, then

AuthenticationError is raised.

close()¶
Close the bound socket or named pipe of the listener object. This is called automatically when the listener is garbage collected. However it is advisable to call it

explicitly.

Listener objects have the following read-only properties:

address¶

The address which is being used by the Listener object.

last_accepted¶

The address from which the last accepted connection came. If this is unavailable then it is None.

The module defines two exceptions:

exception multiprocessing.connection.AuthenticationError¶

Exception raised when there is an authentication error.

Examples

The following server code creates a listener which uses 'secret password' as an authentication key. It then waits for a connection and sends some data to

the client:

from multiprocessing.connection import Listener

from array import array

address = ('localhost', 6000) # family is deduced to be 'AF_INET'

listener = Listener(address, authkey='secret password')

conn = listener.accept()

print 'connection accepted from', listener.last_accepted

conn.send([2.25, None, 'junk', float])

conn.send_bytes('hello')

conn.send_bytes(array('i', [42, 1729]))

conn.close()

listener.close()

The following code connects to the server and receives some data from the server:

from multiprocessing.connection import Client

from array import array

address = ('localhost', 6000)

conn = Client(address, authkey='secret password')

print conn.recv() # => [2.25, None, 'junk', float]

print conn.recv_bytes() # => 'hello'

arr = array('i', [0, 0, 0, 0, 0])

print conn.recv_bytes_into(arr) # => 8

print arr # => array('i', [42, 1729, 0, 0, 0])

conn.close()

17.6.2.10.1. Address Formats¶

An 'AF_INET' address is a tuple of the form (hostname, port) where hostname is a string and port is an integer.

An 'AF_UNIX' address is a string representing a filename on the filesystem.

An 'AF_PIPE' address is a string of the form

r'\\.\pipe\PipeName'. To use Client() to connect to a named pipe on a remote computer called ServerName one should use an address of the form

r'\\ServerName\pipe\PipeName' instead.

Note that any string beginning with two backslashes is assumed by default to be an 'AF_PIPE' address rather than an 'AF_UNIX' address.

17.6.2.11. Authentication keys¶

When one uses Connection.recv(), the data received is automatically unpickled. Unfortunately unpickling data from an untrusted source is a security risk.

Therefore Listener and Client() use the hmac module to provide digest authentication.

An authentication key is a string which can be thought of as a password: once a connection is established both ends will demand proof that the other knows the

authentication key. (Demonstrating that both ends are using the same key does not involve sending the key over the connection.)

If authentication is requested but do authentication key is specified then the return value of current_process().authkey is used (see Process). This value

will automatically inherited by any Process object that the current process creates. This means that (by default) all processes of a multi-process program will

share a single authentication key which can be used when setting up connections between themselves.

Suitable authentication keys can also be generated by using os.urandom().

17.6.2.12. Logging¶

Some support for logging is available. Note, however, that the logging package does not use process shared locks so it is possible (depending on the handler

type) for messages from different processes to get mixed up.

multiprocessing.get_logger()¶

Returns the logger used by multiprocessing. If necessary, a new one will be created.

When first created the logger has level logging.NOTSET and no default handler. Messages sent to this logger will not by default propagate to the root logger.

Note that on Windows child processes will only inherit the level of the parent process’s logger – any other customization of the logger will not be inherited.

multiprocessing.log_to_stderr()¶
This function performs a call to get_logger() but in addition to returning the logger created by get_logger, it adds a handler which sends output to

sys.stderr using format '[%(levelname)s/%(processName)s] %(message)s'.

Below is an example session with logging turned on:

>>> import multiprocessing, logging

>>> logger = multiprocessing.log_to_stderr()

>>> logger.setLevel(logging.INFO)

>>> logger.warning('doomed')

[WARNING/MainProcess] doomed

>>> m = multiprocessing.Manager()

[INFO/SyncManager-...] child process calling self.run()

[INFO/SyncManager-...] created temp directory /.../pymp-...

[INFO/SyncManager-...] manager serving at '/.../listener-...'

>>> del m

[INFO/MainProcess] sending shutdown message to manager

[INFO/SyncManager-...] manager exiting with exitcode 0

In addition to having these two logging functions, the multiprocessing also exposes two additional logging level attributes. These are SUBWARNING and

SUBDEBUG. The table below illustrates where theses fit in the normal level hierarchy.

Level Numeric value
SUBWARNING 25
SUBDEBUG 5

For a full table of logging levels, see the logging module.

These additional logging levels are used primarily for certain debug messages within the multiprocessing module. Below is the same example as above, except

with SUBDEBUG enabled:

>>> import multiprocessing, logging

>>> logger = multiprocessing.log_to_stderr()

>>> logger.setLevel(multiprocessing.SUBDEBUG)

>>> logger.warning('doomed')

[WARNING/MainProcess] doomed

>>> m = multiprocessing.Manager()

[INFO/SyncManager-...] child process calling self.run()

[INFO/SyncManager-...] created temp directory /.../pymp-...

[INFO/SyncManager-...] manager serving at '/.../pymp-djGBXN/listener-...'

>>> del m

[SUBDEBUG/MainProcess] finalizer calling ...

[INFO/MainProcess] sending shutdown message to manager

[DEBUG/SyncManager-...] manager received shutdown message

[SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...

[SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...

[SUBDEBUG/SyncManager-...] calling <Finalize object, dead>

[SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...

[INFO/SyncManager-...] manager exiting with exitcode 0

17.6.2.13. The multiprocessing.dummy module¶

multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around the threading module.

17.6.3. Programming guidelines¶

There are certain guidelines and idioms which should be adhered to when using multiprocessing.

17.6.3.1. All platforms¶

Avoid shared state

As far as possible one should try to avoid shifting large amounts of data between processes.

It is probably best to stick to using queues or pipes for communication between processes rather than using the lower level synchronization primitives from

the threading module.

Picklability

Ensure that the arguments to the methods of proxies are picklable.

Thread safety of proxies

Do not use a proxy object from more than one thread unless you protect it with a lock.

(There is never a problem with different processes using the same proxy.)

Joining zombie processes

On Unix when a process finishes but has not been joined it becomes a zombie. There should never be very many because each time a new process starts

(or active_children() is called) all completed processes which have not yet been joined will be joined. Also calling a finished process’s

Process.is_alive() will join the process. Even so it is probably good practice to explicitly join all the processes that you start.

Better to inherit than pickle/unpickle

On Windows many types from multiprocessing need to be picklable so that child processes can use them. However, one should generally avoid

sending shared objects to other processes using pipes or queues. Instead you should arrange the program so that a process which need access to a

shared resource created elsewhere can inherit it from an ancestor process.

Avoid terminating processes

Using the Process.terminate() method to stop a process is liable to cause any shared resources (such as locks, semaphores, pipes and queues)

currently being used by the process to become broken or unavailable to other processes.

Therefore it is probably best to only consider using Process.terminate() on processes which never use any shared resources.

Joining processes that use queues

Bear in mind that a process that has put items in a queue will wait before terminating until all the buffered items are fed by the “feeder” thread to the

underlying pipe. (The child process can call the Queue.cancel_join_thread() method of the queue to avoid this behaviour.)

This means that whenever you use a queue you need to make sure that all items which have been put on the queue will eventually be removed before the

process is joined. Otherwise you cannot be sure that processes which have put items on the queue will terminate. Remember also that non-daemonic

processes will be automatically be joined.

An example which will deadlock is the following:

from multiprocessing import Process, Queue

def f(q):

 q.put('X' * 1000000)

if __name__ == '__main__':

 queue = Queue()

 p = Process(target=f, args=(queue,))

 p.start()

 p.join() # this deadlocks

 obj = queue.get()

A fix here would be to swap the last two lines round (or simply remove the p.join() line).

Explicitly pass resources to child processes

On Unix a child process can make use of a shared resource created in a parent process using a global resource. However, it is better to pass the object as

an argument to the constructor for the child process.

Apart from making the code (potentially) compatible with Windows this also ensures that as long as the child process is still alive the object will not be

garbage collected in the parent process. This might be important if some resource is freed when the object is garbage collected in the parent process.

So for instance

from multiprocessing import Process, Lock

def f():

 ... do something using "lock" ...

if __name__ == '__main__':

 lock = Lock()

 for i in range(10):

 Process(target=f).start()

should be rewritten as

from multiprocessing import Process, Lock

def f(l):

 ... do something using "l" ...

if __name__ == '__main__':

 lock = Lock()

 for i in range(10):

 Process(target=f, args=(lock,)).start()

Beware replacing sys.stdin with a “file like object”

multiprocessing originally unconditionally called:

os.close(sys.stdin.fileno())

in the multiprocessing.Process._bootstrap() method — this resulted in issues with processes-in-processes. This has been changed to:

sys.stdin.close()

sys.stdin = open(os.devnull)

Which solves the fundamental issue of processes colliding with each other resulting in a bad file descriptor error, but introduces a potential danger to

applications which replace sys.stdin() with a “file-like object” with output buffering. This danger is that if multiple processes call close() on this

file-like object, it could result in the same data being flushed to the object multiple times, resulting in corruption.

If you write a file-like object and implement your own caching, you can make it fork-safe by storing the pid whenever you append to the cache, and

discarding the cache when the pid changes. For example:

@property

def cache(self):

 pid = os.getpid()

 if pid != self._pid:

 self._pid = pid

 self._cache = []

 return self._cache

For more information, see issue 5155, issue 5313 and issue 5331

17.6.3.2. Windows¶

Since Windows lacks os.fork() it has a few extra restrictions:

More picklability

Ensure that all arguments to Process.__init__() are picklable. This means, in particular, that bound or unbound methods cannot be used directly as

the target argument on Windows — just define a function and use that instead.

Also, if you subclass Process then make sure that instances will be picklable when the Process.start() method is called.

Global variables

Bear in mind that if code run in a child process tries to access a global variable, then the value it sees (if any) may not be the same as the value in the

parent process at the time that Process.start() was called.

However, global variables which are just module level constants cause no problems.

Safe importing of main module

Make sure that the main module can be safely imported by a new Python interpreter without causing unintended side effects (such a starting a new

process).

For example, under Windows running the following module would fail with a RuntimeError:

from multiprocessing import Process

def foo():

 print 'hello'

http://bugs.python.org/issue5155
http://bugs.python.org/issue5313
http://bugs.python.org/issue5331

p = Process(target=foo)

p.start()

Instead one should protect the “entry point” of the program by using if __name__ == '__main__': as follows:

from multiprocessing import Process, freeze_support

def foo():

 print 'hello'

if __name__ == '__main__':

 freeze_support()

 p = Process(target=foo)

 p.start()

(The freeze_support() line can be omitted if the program will be run normally instead of frozen.)

This allows the newly spawned Python interpreter to safely import the module and then run the module’s foo() function.

Similar restrictions apply if a pool or manager is created in the main module.

17.6.4. Examples¶

Demonstration of how to create and use customized managers and proxies:

This module shows how to use arbitrary callables with a subclass of

`BaseManager`.

Copyright (c) 2006-2008, R Oudkerk

All rights reserved.

from multiprocessing import freeze_support

from multiprocessing.managers import BaseManager, BaseProxy

import operator

class Foo(object):

 def f(self):

 print 'you called Foo.f()'

 def g(self):

 print 'you called Foo.g()'

 def _h(self):

 print 'you called Foo._h()'

A simple generator function

def baz():

 for i in xrange(10):

 yield i*i

Proxy type for generator objects

class GeneratorProxy(BaseProxy):

 exposed = ('next', '__next__')

 def __iter__(self):

 return self

 def next(self):

 return self._callmethod('next')

 def __next__(self):

 return self._callmethod('__next__')

Function to return the operator module

def get_operator_module():

 return operator

class MyManager(BaseManager):

 pass

register the Foo class; make `f()` and `g()` accessible via proxy

MyManager.register('Foo1', Foo)

register the Foo class; make `g()` and `_h()` accessible via proxy

MyManager.register('Foo2', Foo, exposed=('g', '_h'))

register the generator function baz; use `GeneratorProxy` to make proxies

MyManager.register('baz', baz, proxytype=GeneratorProxy)

register get_operator_module(); make public functions accessible via proxy

MyManager.register('operator', get_operator_module)

def test():

 manager = MyManager()

 manager.start()

 print '-' * 20

 f1 = manager.Foo1()

 f1.f()

 f1.g()

 assert not hasattr(f1, '_h')

 assert sorted(f1._exposed_) == sorted(['f', 'g'])

 print '-' * 20

 f2 = manager.Foo2()

 f2.g()

 f2._h()

 assert not hasattr(f2, 'f')

 assert sorted(f2._exposed_) == sorted(['g', '_h'])

 print '-' * 20

 it = manager.baz()

 for i in it:

 print '<%d>' % i,

 print

 print '-' * 20

 op = manager.operator()

 print 'op.add(23, 45) =', op.add(23, 45)

 print 'op.pow(2, 94) =', op.pow(2, 94)

 print 'op.getslice(range(10), 2, 6) =', op.getslice(range(10), 2, 6)

 print 'op.repeat(range(5), 3) =', op.repeat(range(5), 3)

 print 'op._exposed_ =', op._exposed_

if __name__ == '__main__':

 freeze_support()

 test()

Using Pool:

A test of `multiprocessing.Pool` class

Copyright (c) 2006-2008, R Oudkerk

All rights reserved.

import multiprocessing

import time

import random

import sys

Functions used by test code

def calculate(func, args):

 result = func(*args)

 return '%s says that %s%s = %s' % (

 multiprocessing.current_process().name,

 func.__name__, args, result

)

def calculatestar(args):

 return calculate(*args)

def mul(a, b):

 time.sleep(0.5*random.random())

 return a * b

def plus(a, b):

 time.sleep(0.5*random.random())

 return a + b

def f(x):

 return 1.0 / (x-5.0)

def pow3(x):

 return x**3

def noop(x):

 pass

Test code

def test():

 print 'cpu_count() = %d\n' % multiprocessing.cpu_count()

 #

 # Create pool

 #

 PROCESSES = 4

 print 'Creating pool with %d processes\n' % PROCESSES

 pool = multiprocessing.Pool(PROCESSES)

 print 'pool = %s' % pool

 print

 #

 # Tests

 #

 TASKS = [(mul, (i, 7)) for i in range(10)] + \

 [(plus, (i, 8)) for i in range(10)]

 results = [pool.apply_async(calculate, t) for t in TASKS]

 imap_it = pool.imap(calculatestar, TASKS)

 imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)

 print 'Ordered results using pool.apply_async():'

 for r in results:

 print '\t', r.get()

 print

 print 'Ordered results using pool.imap():'

 for x in imap_it:

 print '\t', x

 print

 print 'Unordered results using pool.imap_unordered():'

 for x in imap_unordered_it:

 print '\t', x

 print

 print 'Ordered results using pool.map() --- will block till complete:'

 for x in pool.map(calculatestar, TASKS):

 print '\t', x

 print

 #

 # Simple benchmarks

 #

 N = 100000

 print 'def pow3(x): return x**3'

 t = time.time()

 A = map(pow3, xrange(N))

 print '\tmap(pow3, xrange(%d)):\n\t\t%s seconds' % \

 (N, time.time() - t)

 t = time.time()

 B = pool.map(pow3, xrange(N))

 print '\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds' % \

 (N, time.time() - t)

 t = time.time()

 C = list(pool.imap(pow3, xrange(N), chunksize=N//8))

 print '\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s' \

 ' seconds' % (N, N//8, time.time() - t)

 assert A == B == C, (len(A), len(B), len(C))

 print

 L = [None] * 1000000

 print 'def noop(x): pass'

 print 'L = [None] * 1000000'

 t = time.time()

 A = map(noop, L)

 print '\tmap(noop, L):\n\t\t%s seconds' % \

 (time.time() - t)

 t = time.time()

 B = pool.map(noop, L)

 print '\tpool.map(noop, L):\n\t\t%s seconds' % \

 (time.time() - t)

 t = time.time()

 C = list(pool.imap(noop, L, chunksize=len(L)//8))

 print '\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds' % \

 (len(L)//8, time.time() - t)

 assert A == B == C, (len(A), len(B), len(C))

 print

 del A, B, C, L

 #

 # Test error handling

 #

 print 'Testing error handling:'

 try:

 print pool.apply(f, (5,))

 except ZeroDivisionError:

 print '\tGot ZeroDivisionError as expected from pool.apply()'

 else:

 raise AssertionError('expected ZeroDivisionError')

 try:

 print pool.map(f, range(10))

 except ZeroDivisionError:

 print '\tGot ZeroDivisionError as expected from pool.map()'

 else:

 raise AssertionError('expected ZeroDivisionError')

 try:

 print list(pool.imap(f, range(10)))

 except ZeroDivisionError:

 print '\tGot ZeroDivisionError as expected from list(pool.imap())'

 else:

 raise AssertionError('expected ZeroDivisionError')

 it = pool.imap(f, range(10))

 for i in range(10):

 try:

 x = it.next()

 except ZeroDivisionError:

 if i == 5:

 pass

 except StopIteration:

 break

 else:

 if i == 5:

 raise AssertionError('expected ZeroDivisionError')

 assert i == 9

 print '\tGot ZeroDivisionError as expected from IMapIterator.next()'

 print

 #

 # Testing timeouts

 #

 print 'Testing ApplyResult.get() with timeout:',

 res = pool.apply_async(calculate, TASKS[0])

 while 1:

 sys.stdout.flush()

 try:

 sys.stdout.write('\n\t%s' % res.get(0.02))

 break

 except multiprocessing.TimeoutError:

 sys.stdout.write('.')

 print

 print

 print 'Testing IMapIterator.next() with timeout:',

 it = pool.imap(calculatestar, TASKS)

 while 1:

 sys.stdout.flush()

 try:

 sys.stdout.write('\n\t%s' % it.next(0.02))

 except StopIteration:

 break

 except multiprocessing.TimeoutError:

 sys.stdout.write('.')

 print

 print

 #

 # Testing callback

 #

 print 'Testing callback:'

 A = []

 B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

 r = pool.apply_async(mul, (7, 8), callback=A.append)

 r.wait()

 r = pool.map_async(pow3, range(10), callback=A.extend)

 r.wait()

 if A == B:

 print '\tcallbacks succeeded\n'

 else:

 print '\t*** callbacks failed\n\t\t%s != %s\n' % (A, B)

 #

 # Check there are no outstanding tasks

 #

 assert not pool._cache, 'cache = %r' % pool._cache

 #

 # Check close() methods

 #

 print 'Testing close():'

 for worker in pool._pool:

 assert worker.is_alive()

 result = pool.apply_async(time.sleep, [0.5])

 pool.close()

 pool.join()

 assert result.get() is None

 for worker in pool._pool:

 assert not worker.is_alive()

 print '\tclose() succeeded\n'

 #

 # Check terminate() method

 #

 print 'Testing terminate():'

 pool = multiprocessing.Pool(2)

 DELTA = 0.1

 ignore = pool.apply(pow3, [2])

 results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]

 pool.terminate()

 pool.join()

 for worker in pool._pool:

 assert not worker.is_alive()

 print '\tterminate() succeeded\n'

 #

 # Check garbage collection

 #

 print 'Testing garbage collection:'

 pool = multiprocessing.Pool(2)

 DELTA = 0.1

 processes = pool._pool

 ignore = pool.apply(pow3, [2])

 results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]

 results = pool = None

 time.sleep(DELTA * 2)

 for worker in processes:

 assert not worker.is_alive()

 print '\tgarbage collection succeeded\n'

if __name__ == '__main__':

 multiprocessing.freeze_support()

 assert len(sys.argv) in (1, 2)

 if len(sys.argv) == 1 or sys.argv[1] == 'processes':

 print ' Using processes '.center(79, '-')

 elif sys.argv[1] == 'threads':

 print ' Using threads '.center(79, '-')

 import multiprocessing.dummy as multiprocessing

 else:

 print 'Usage:\n\t%s [processes | threads]' % sys.argv[0]

 raise SystemExit(2)

 test()

Synchronization types like locks, conditions and queues:

A test file for the `multiprocessing` package

Copyright (c) 2006-2008, R Oudkerk

All rights reserved.

import time, sys, random

from Queue import Empty

import multiprocessing # may get overwritten

TEST_VALUE

def value_func(running, mutex):

 random.seed()

 time.sleep(random.random()*4)

 mutex.acquire()

 print '\n\t\t\t' + str(multiprocessing.current_process()) + ' has finished'

 running.value -= 1

 mutex.release()

def test_value():

 TASKS = 10

 running = multiprocessing.Value('i', TASKS)

 mutex = multiprocessing.Lock()

 for i in range(TASKS):

 p = multiprocessing.Process(target=value_func, args=(running, mutex))

 p.start()

 while running.value > 0:

 time.sleep(0.08)

 mutex.acquire()

 print running.value,

 sys.stdout.flush()

 mutex.release()

 print

 print 'No more running processes'

TEST_QUEUE

def queue_func(queue):

 for i in range(30):

 time.sleep(0.5 * random.random())

 queue.put(i*i)

 queue.put('STOP')

def test_queue():

 q = multiprocessing.Queue()

 p = multiprocessing.Process(target=queue_func, args=(q,))

 p.start()

 o = None

 while o != 'STOP':

 try:

 o = q.get(timeout=0.3)

 print o,

 sys.stdout.flush()

 except Empty:

 print 'TIMEOUT'

 print

TEST_CONDITION

def condition_func(cond):

 cond.acquire()

 print '\t' + str(cond)

 time.sleep(2)

 print '\tchild is notifying'

 print '\t' + str(cond)

 cond.notify()

 cond.release()

def test_condition():

 cond = multiprocessing.Condition()

 p = multiprocessing.Process(target=condition_func, args=(cond,))

 print cond

 cond.acquire()

 print cond

 cond.acquire()

 print cond

 p.start()

 print 'main is waiting'

 cond.wait()

 print 'main has woken up'

 print cond

 cond.release()

 print cond

 cond.release()

 p.join()

 print cond

TEST_SEMAPHORE

def semaphore_func(sema, mutex, running):

 sema.acquire()

 mutex.acquire()

 running.value += 1

 print running.value, 'tasks are running'

 mutex.release()

 random.seed()

 time.sleep(random.random()*2)

 mutex.acquire()

 running.value -= 1

 print '%s has finished' % multiprocessing.current_process()

 mutex.release()

 sema.release()

def test_semaphore():

 sema = multiprocessing.Semaphore(3)

 mutex = multiprocessing.RLock()

 running = multiprocessing.Value('i', 0)

 processes = [

 multiprocessing.Process(target=semaphore_func,

 args=(sema, mutex, running))

 for i in range(10)

]

 for p in processes:

 p.start()

 for p in processes:

 p.join()

TEST_JOIN_TIMEOUT

def join_timeout_func():

 print '\tchild sleeping'

 time.sleep(5.5)

 print '\n\tchild terminating'

def test_join_timeout():

 p = multiprocessing.Process(target=join_timeout_func)

 p.start()

 print 'waiting for process to finish'

 while 1:

 p.join(timeout=1)

 if not p.is_alive():

 break

 print '.',

 sys.stdout.flush()

TEST_EVENT

def event_func(event):

 print '\t%r is waiting' % multiprocessing.current_process()

 event.wait()

 print '\t%r has woken up' % multiprocessing.current_process()

def test_event():

 event = multiprocessing.Event()

 processes = [multiprocessing.Process(target=event_func, args=(event,))

 for i in range(5)]

 for p in processes:

 p.start()

 print 'main is sleeping'

 time.sleep(2)

 print 'main is setting event'

 event.set()

 for p in processes:

 p.join()

TEST_SHAREDVALUES

def sharedvalues_func(values, arrays, shared_values, shared_arrays):

 for i in range(len(values)):

 v = values[i][1]

 sv = shared_values[i].value

 assert v == sv

 for i in range(len(values)):

 a = arrays[i][1]

 sa = list(shared_arrays[i][:])

 assert a == sa

 print 'Tests passed'

def test_sharedvalues():

 values = [

 ('i', 10),

 ('h', -2),

 ('d', 1.25)

]

 arrays = [

 ('i', range(100)),

 ('d', [0.25 * i for i in range(100)]),

 ('H', range(1000))

]

 shared_values = [multiprocessing.Value(id, v) for id, v in values]

 shared_arrays = [multiprocessing.Array(id, a) for id, a in arrays]

 p = multiprocessing.Process(

 target=sharedvalues_func,

 args=(values, arrays, shared_values, shared_arrays)

)

 p.start()

 p.join()

 assert p.exitcode == 0

def test(namespace=multiprocessing):

 global multiprocessing

 multiprocessing = namespace

 for func in [test_value, test_queue, test_condition,

 test_semaphore, test_join_timeout, test_event,

 test_sharedvalues]:

 print '\n\t######## %s\n' % func.__name__

 func()

 ignore = multiprocessing.active_children() # cleanup any old processes

 if hasattr(multiprocessing, '_debug_info'):

 info = multiprocessing._debug_info()

 if info:

 print info

 raise ValueError('there should be no positive refcounts left')

if __name__ == '__main__':

 multiprocessing.freeze_support()

 assert len(sys.argv) in (1, 2)

 if len(sys.argv) == 1 or sys.argv[1] == 'processes':

 print ' Using processes '.center(79, '-')

 namespace = multiprocessing

 elif sys.argv[1] == 'manager':

 print ' Using processes and a manager '.center(79, '-')

 namespace = multiprocessing.Manager()

 namespace.Process = multiprocessing.Process

 namespace.current_process = multiprocessing.current_process

 namespace.active_children = multiprocessing.active_children

 elif sys.argv[1] == 'threads':

 print ' Using threads '.center(79, '-')

 import multiprocessing.dummy as namespace

 else:

 print 'Usage:\n\t%s [processes | manager | threads]' % sys.argv[0]

 raise SystemExit(2)

 test(namespace)

An showing how to use queues to feed tasks to a collection of worker process and collect the results:

Simple example which uses a pool of workers to carry out some tasks.

Notice that the results will probably not come out of the output

queue in the same in the same order as the corresponding tasks were

put on the input queue. If it is important to get the results back

in the original order then consider using `Pool.map()` or

`Pool.imap()` (which will save on the amount of code needed anyway).

Copyright (c) 2006-2008, R Oudkerk

All rights reserved.

import time

import random

from multiprocessing import Process, Queue, current_process, freeze_support

Function run by worker processes

def worker(input, output):

 for func, args in iter(input.get, 'STOP'):

 result = calculate(func, args)

 output.put(result)

Function used to calculate result

def calculate(func, args):

 result = func(*args)

 return '%s says that %s%s = %s' % \

 (current_process().name, func.__name__, args, result)

Functions referenced by tasks

def mul(a, b):

 time.sleep(0.5*random.random())

 return a * b

def plus(a, b):

 time.sleep(0.5*random.random())

 return a + b

def test():

 NUMBER_OF_PROCESSES = 4

 TASKS1 = [(mul, (i, 7)) for i in range(20)]

 TASKS2 = [(plus, (i, 8)) for i in range(10)]

 # Create queues

 task_queue = Queue()

 done_queue = Queue()

 # Submit tasks

 for task in TASKS1:

 task_queue.put(task)

 # Start worker processes

 for i in range(NUMBER_OF_PROCESSES):

 Process(target=worker, args=(task_queue, done_queue)).start()

 # Get and print results

 print 'Unordered results:'

 for i in range(len(TASKS1)):

 print '\t', done_queue.get()

 # Add more tasks using `put()`

 for task in TASKS2:

 task_queue.put(task)

 # Get and print some more results

 for i in range(len(TASKS2)):

 print '\t', done_queue.get()

 # Tell child processes to stop

 for i in range(NUMBER_OF_PROCESSES):

 task_queue.put('STOP')

if __name__ == '__main__':

 freeze_support()

 test()

An example of how a pool of worker processes can each run a SimpleHTTPServer.HttpServer instance while sharing a single listening socket.

Example where a pool of http servers share a single listening socket

On Windows this module depends on the ability to pickle a socket

object so that the worker processes can inherit a copy of the server

object. (We import `multiprocessing.reduction` to enable this pickling.)

Not sure if we should synchronize access to `socket.accept()` method by

using a process-shared lock -- does not seem to be necessary.

#

Copyright (c) 2006-2008, R Oudkerk

All rights reserved.

import os

import sys

from multiprocessing import Process, current_process, freeze_support

from BaseHTTPServer import HTTPServer

from SimpleHTTPServer import SimpleHTTPRequestHandler

if sys.platform == 'win32':

 import multiprocessing.reduction # make sockets pickable/inheritable

def note(format, *args):

 sys.stderr.write('[%s]\t%s\n' % (current_process().name, format%args))

class RequestHandler(SimpleHTTPRequestHandler):

 # we override log_message() to show which process is handling the request

 def log_message(self, format, *args):

 note(format, *args)

def serve_forever(server):

 note('starting server')

 try:

 server.serve_forever()

 except KeyboardInterrupt:

 pass

def runpool(address, number_of_processes):

 # create a single server object -- children will each inherit a copy

 server = HTTPServer(address, RequestHandler)

 # create child processes to act as workers

 for i in range(number_of_processes-1):

 Process(target=serve_forever, args=(server,)).start()

 # main process also acts as a worker

 serve_forever(server)

def test():

 DIR = os.path.join(os.path.dirname(__file__), '..')

 ADDRESS = ('localhost', 8000)

 NUMBER_OF_PROCESSES = 4

 print 'Serving at http://%s:%d using %d worker processes' % \

 (ADDRESS[0], ADDRESS[1], NUMBER_OF_PROCESSES)

 print 'To exit press Ctrl-' + ['C', 'Break'][sys.platform=='win32']

 os.chdir(DIR)

 runpool(ADDRESS, NUMBER_OF_PROCESSES)

if __name__ == '__main__':

 freeze_support()

 test()

Some simple benchmarks comparing multiprocessing with threading:

Simple benchmarks for the multiprocessing package

Copyright (c) 2006-2008, R Oudkerk

All rights reserved.

#

import time, sys, multiprocessing, threading, Queue, gc

if sys.platform == 'win32':

 _timer = time.clock

else:

 _timer = time.time

delta = 1

TEST_QUEUESPEED

def queuespeed_func(q, c, iterations):

 a = '0' * 256

 c.acquire()

 c.notify()

 c.release()

 for i in xrange(iterations):

 q.put(a)

 q.put('STOP')

def test_queuespeed(Process, q, c):

 elapsed = 0

 iterations = 1

 while elapsed < delta:

 iterations *= 2

 p = Process(target=queuespeed_func, args=(q, c, iterations))

 c.acquire()

 p.start()

 c.wait()

 c.release()

 result = None

 t = _timer()

 while result != 'STOP':

 result = q.get()

 elapsed = _timer() - t

 p.join()

 print iterations, 'objects passed through the queue in', elapsed, 'seconds'

 print 'average number/sec:', iterations/elapsed

TEST_PIPESPEED

def pipe_func(c, cond, iterations):

 a = '0' * 256

 cond.acquire()

 cond.notify()

 cond.release()

 for i in xrange(iterations):

 c.send(a)

 c.send('STOP')

def test_pipespeed():

 c, d = multiprocessing.Pipe()

 cond = multiprocessing.Condition()

 elapsed = 0

 iterations = 1

 while elapsed < delta:

 iterations *= 2

 p = multiprocessing.Process(target=pipe_func,

 args=(d, cond, iterations))

 cond.acquire()

 p.start()

 cond.wait()

 cond.release()

 result = None

 t = _timer()

 while result != 'STOP':

 result = c.recv()

 elapsed = _timer() - t

 p.join()

 print iterations, 'objects passed through connection in',elapsed,'seconds'

 print 'average number/sec:', iterations/elapsed

TEST_SEQSPEED

def test_seqspeed(seq):

 elapsed = 0

 iterations = 1

 while elapsed < delta:

 iterations *= 2

 t = _timer()

 for i in xrange(iterations):

 a = seq[5]

 elapsed = _timer()-t

 print iterations, 'iterations in', elapsed, 'seconds'

 print 'average number/sec:', iterations/elapsed

TEST_LOCK

def test_lockspeed(l):

 elapsed = 0

 iterations = 1

 while elapsed < delta:

 iterations *= 2

 t = _timer()

 for i in xrange(iterations):

 l.acquire()

 l.release()

 elapsed = _timer()-t

 print iterations, 'iterations in', elapsed, 'seconds'

 print 'average number/sec:', iterations/elapsed

TEST_CONDITION

def conditionspeed_func(c, N):

 c.acquire()

 c.notify()

 for i in xrange(N):

 c.wait()

 c.notify()

 c.release()

def test_conditionspeed(Process, c):

 elapsed = 0

 iterations = 1

 while elapsed < delta:

 iterations *= 2

 c.acquire()

 p = Process(target=conditionspeed_func, args=(c, iterations))

 p.start()

 c.wait()

 t = _timer()

 for i in xrange(iterations):

 c.notify()

 c.wait()

 elapsed = _timer()-t

 c.release()

 p.join()

 print iterations * 2, 'waits in', elapsed, 'seconds'

 print 'average number/sec:', iterations * 2 / elapsed

def test():

 manager = multiprocessing.Manager()

 gc.disable()

 print '\n\t######## testing Queue.Queue\n'

 test_queuespeed(threading.Thread, Queue.Queue(),

 threading.Condition())

 print '\n\t######## testing multiprocessing.Queue\n'

 test_queuespeed(multiprocessing.Process, multiprocessing.Queue(),

 multiprocessing.Condition())

 print '\n\t######## testing Queue managed by server process\n'

 test_queuespeed(multiprocessing.Process, manager.Queue(),

 manager.Condition())

 print '\n\t######## testing multiprocessing.Pipe\n'

 test_pipespeed()

 print

 print '\n\t######## testing list\n'

 test_seqspeed(range(10))

 print '\n\t######## testing list managed by server process\n'

 test_seqspeed(manager.list(range(10)))

 print '\n\t######## testing Array("i", ..., lock=False)\n'

 test_seqspeed(multiprocessing.Array('i', range(10), lock=False))

 print '\n\t######## testing Array("i", ..., lock=True)\n'

 test_seqspeed(multiprocessing.Array('i', range(10), lock=True))

 print

 print '\n\t######## testing threading.Lock\n'

 test_lockspeed(threading.Lock())

 print '\n\t######## testing threading.RLock\n'

 test_lockspeed(threading.RLock())

 print '\n\t######## testing multiprocessing.Lock\n'

 test_lockspeed(multiprocessing.Lock())

 print '\n\t######## testing multiprocessing.RLock\n'

 test_lockspeed(multiprocessing.RLock())

 print '\n\t######## testing lock managed by server process\n'

 test_lockspeed(manager.Lock())

 print '\n\t######## testing rlock managed by server process\n'

 test_lockspeed(manager.RLock())

 print

 print '\n\t######## testing threading.Condition\n'

 test_conditionspeed(threading.Thread, threading.Condition())

 print '\n\t######## testing multiprocessing.Condition\n'

 test_conditionspeed(multiprocessing.Process, multiprocessing.Condition())

 print '\n\t######## testing condition managed by a server process\n'

 test_conditionspeed(multiprocessing.Process, manager.Condition())

 gc.enable()

if __name__ == '__main__':

 multiprocessing.freeze_support()

 test()

Table Of Contents

17.6. multiprocessing — Process-based “threading” interface

17.6.1. Introduction

• 17.6.1.1. The Process class

• 17.6.1.2. Exchanging objects between processes

• 17.6.1.3. Synchronization between processes

• 17.6.1.4. Sharing state between processes

• 17.6.1.5. Using a pool of workers

17.6.2. Reference

• 17.6.2.1. Process and exceptions

• 17.6.2.2. Pipes and Queues

• 17.6.2.3. Miscellaneous

• 17.6.2.4. Connection Objects

• 17.6.2.5. Synchronization primitives

17.6.2.6. Shared ctypes Objects

• 17.6.2.6.1. The multiprocessing.sharedctypes module

17.6.2.7. Managers

• 17.6.2.7.1. Namespace objects

• 17.6.2.7.2. Customized managers

• 17.6.2.7.3. Using a remote manager

17.6.2.8. Proxy Objects

• 17.6.2.8.1. Cleanup

• 17.6.2.9. Process Pools

17.6.2.10. Listeners and Clients

• 17.6.2.10.1. Address Formats

• 17.6.2.11. Authentication keys

• 17.6.2.12. Logging

• 17.6.2.13. The multiprocessing.dummy module

17.6.3. Programming guidelines

• 17.6.3.1. All platforms

• 17.6.3.2. Windows

• 17.6.4. Examples

Previous topic

17.5. dummy_thread — Drop-in replacement for the thread module

Next topic

17.7. mmap — Memory-mapped file support

This Page

• Show Source

Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 17. Optional Operating System Services »

© Copyright 1990-2010, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Feb 26, 2010. Created using Sphinx 0.6.3.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

	Navigation
	Navigation
	Navigation

	17.6. multiprocessing — Process-based “threading” interface¶
	17.6.1. Introduction¶
	17.6.1.1. The Process class¶
	17.6.1.2. Exchanging objects between processes¶
	17.6.1.3. Synchronization between processes¶
	17.6.1.4. Sharing state between processes¶
	17.6.1.5. Using a pool of workers¶

	17.6.2. Reference¶
	17.6.2.1. Process and exceptions¶
	17.6.2.2. Pipes and Queues¶
	17.6.2.3. Miscellaneous¶
	17.6.2.4. Connection Objects¶
	17.6.2.5. Synchronization primitives¶
	17.6.2.6. Shared ctypes Objects¶
	17.6.2.6.1. The multiprocessing.sharedctypes module¶

	17.6.2.7. Managers¶
	17.6.2.7.1. Namespace objects¶
	17.6.2.7.2. Customized managers¶
	17.6.2.7.3. Using a remote manager¶

	17.6.2.8. Proxy Objects¶
	17.6.2.8.1. Cleanup¶

	17.6.2.9. Process Pools¶
	17.6.2.10. Listeners and Clients¶
	17.6.2.10.1. Address Formats¶

	17.6.2.11. Authentication keys¶
	17.6.2.12. Logging¶
	17.6.2.13. The multiprocessing.dummy module¶

	17.6.3. Programming guidelines¶
	17.6.3.1. All platforms¶
	17.6.3.2. Windows¶

	17.6.4. Examples¶
	Table Of Contents
	Previous topic
	Next topic

	This Page
	Navigation

