
Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 21. Internet Protocols and Support »

21.11. nntplib — NNTP protocol client¶

This module defines the class NNTP which implements the client side of the NNTP protocol. It can be used to implement a news reader or poster, or automated

news processors. For more information on NNTP (Network News Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of the last 10 articles:

>>> s = NNTP('news.cwi.nl')

>>> resp, count, first, last, name = s.group('comp.lang.python')

>>> print 'Group', name, 'has', count, 'articles, range', first, 'to', last

Group comp.lang.python has 59 articles, range 3742 to 3803

>>> resp, subs = s.xhdr('subject', first + '-' + last)

>>> for id, sub in subs[-10:]: print id, sub

...

3792 Re: Removing elements from a list while iterating...

3793 Re: Who likes Info files?

3794 Emacs and doc strings

3795 a few questions about the Mac implementation

3796 Re: executable python scripts

3797 Re: executable python scripts

3798 Re: a few questions about the Mac implementation

3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules

3802 Re: executable python scripts

3803 Re: \POSIX{} wait and SIGCHLD

>>> s.quit()

'205 news.cwi.nl closing connection. Goodbye.'

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP('news.cwi.nl')

>>> f = open('/tmp/article')

>>> s.post(f)

'240 Article posted successfully.'

>>> s.quit()

'205 news.cwi.nl closing connection. Goodbye.'

The module itself defines the following items:

class nntplib.NNTP(host[, port[, user[, password[, readermode][, usenetrc]]]])¶

Return a new instance of the NNTP class, representing a connection to the NNTP server running on host host, listening at port port. The default port is 119. If the

optional user and password are provided, or if suitable credentials are present in /.netrc and the optional flag usenetrc is true (the default), the AUTHINFO

USER and AUTHINFO PASS commands are used to identify and authenticate the user to the server. If the optional flag readermode is true, then a mode

reader command is sent before authentication is performed. Reader mode is sometimes necessary if you are connecting to an NNTP server on the local

machine and intend to call reader-specific commands, such as group. If you get unexpected NNTPPermanentErrors, you might need to set readermode.

readermode defaults to None. usenetrc defaults to True.

Changed in version 2.4: usenetrc argument added.

exception nntplib.NNTPError¶

Derived from the standard exception Exception, this is the base class for all exceptions raised by the nntplib module.

exception nntplib.NNTPReplyError¶

Exception raised when an unexpected reply is received from the server. For backwards compatibility, the exception error_reply is equivalent to this class.

exception nntplib.NNTPTemporaryError¶

Exception raised when an error code in the range 400–499 is received. For backwards compatibility, the exception error_temp is equivalent to this class.

exception nntplib.NNTPPermanentError¶

Exception raised when an error code in the range 500–599 is received. For backwards compatibility, the exception error_perm is equivalent to this class.

http://tools.ietf.org/html/rfc977.html

exception nntplib.NNTPProtocolError¶

Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5. For backwards compatibility, the exception

error_proto is equivalent to this class.

exception nntplib.NNTPDataError¶

Exception raised when there is some error in the response data. For backwards compatibility, the exception error_data is equivalent to this class.

21.11.1. NNTP Objects¶

NNTP instances have the following methods. The response that is returned as the first item in the return tuple of almost all methods is the server’s response: a

string beginning with a three-digit code. If the server’s response indicates an error, the method raises one of the above exceptions.

NNTP.getwelcome()¶
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes contains disclaimers or help information that may be

relevant to the user.)

NNTP.set_debuglevel(level)¶
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0, produces no debugging output. A value of 1 produces a

moderate amount of debugging output, generally a single line per request or response. A value of 2 or higher produces the maximum amount of debugging

output, logging each line sent and received on the connection (including message text).

NNTP.newgroups(date, time[, file])¶
Send a NEWGROUPS command. The date argument should be a string of the form 'yymmdd' indicating the date, and time should be a string of the form

'hhmmss' indicating the time. Return a pair (response, groups) where groups is a list of group names that are new since the given date and time. If the file

parameter is supplied, then the output of the NEWGROUPS command is stored in a file. If file is a string, then the method will open a file object with that name,

write to it then close it. If file is a file object, then it will start calling write() on it to store the lines of the command output. If file is supplied, then the returned list

is an empty list.

NNTP.newnews(group, date, time[, file])¶
Send a NEWNEWS command. Here, group is a group name or '*', and date and time have the same meaning as for newgroups(). Return a pair (response,

articles) where articles is a list of message ids. If the file parameter is supplied, then the output of the NEWNEWS command is stored in a file. If file is a string,

then the method will open a file object with that name, write to it then close it. If file is a file object, then it will start calling write() on it to store the lines of the

command output. If file is supplied, then the returned list is an empty list.

NNTP.list([file])¶
Send a LIST command. Return a pair (response, list) where list is a list of tuples. Each tuple has the form (group, last, first, flag), where

group is a group name, last and first are the last and first article numbers (as strings), and flag is 'y' if posting is allowed, 'n' if not, and 'm' if the newsgroup

is moderated. (Note the ordering: last, first.) If the file parameter is supplied, then the output of the LIST command is stored in a file. If file is a string, then the

method will open a file object with that name, write to it then close it. If file is a file object, then it will start calling write() on it to store the lines of the command

output. If file is supplied, then the returned list is an empty list.

NNTP.descriptions(grouppattern)¶

Send a LIST NEWSGROUPS command, where grouppattern is a wildmat string as specified in RFC2980 (it’s essentially the same as DOS or UNIX shell wildcard

strings). Return a pair (response, list), where list is a list of tuples containing (name, title).

New in version 2.4.

NNTP.description(group)¶

Get a description for a single group group. If more than one group matches (if ‘group’ is a real wildmat string), return the first match. If no group matches, return

an empty string.

This elides the response code from the server. If the response code is needed, use descriptions().

New in version 2.4.

NNTP.group(name)¶
Send a GROUP command, where name is the group name. Return a tuple (response, count, first, last, name) where count is the (estimated)

number of articles in the group, first is the first article number in the group, last is the last article number in the group, and name is the group name. The numbers

are returned as strings.

NNTP.help([file])¶
Send a HELP command. Return a pair (response, list) where list is a list of help strings. If the file parameter is supplied, then the output of the HELP

command is stored in a file. If file is a string, then the method will open a file object with that name, write to it then close it. If file is a file object, then it will start

calling write() on it to store the lines of the command output. If file is supplied, then the returned list is an empty list.

NNTP.stat(id)¶
Send a STAT command, where id is the message id (enclosed in '<' and '>') or an article number (as a string). Return a triple (response, number, id)

where number is the article number (as a string) and id is the message id (enclosed in '<' and '>').

NNTP.next()¶
Send a NEXT command. Return as for stat().

NNTP.last()¶
Send a LAST command. Return as for stat().

NNTP.head(id)¶
Send a HEAD command, where id has the same meaning as for stat(). Return a tuple (response, number, id, list) where the first three are the

same as for stat(), and list is a list of the article’s headers (an uninterpreted list of lines, without trailing newlines).

NNTP.body(id[, file])¶
Send a BODY command, where id has the same meaning as for stat(). If the file parameter is supplied, then the body is stored in a file. If file is a string, then

the method will open a file object with that name, write to it then close it. If file is a file object, then it will start calling write() on it to store the lines of the body.

Return as for head(). If file is supplied, then the returned list is an empty list.

NNTP.article(id)¶
Send an ARTICLE command, where id has the same meaning as for stat(). Return as for head().

NNTP.slave()¶
Send a SLAVE command. Return the server’s response.

NNTP.xhdr(header, string[, file])¶
Send an XHDR command. This command is not defined in the RFC but is a common extension. The header argument is a header keyword, e.g. 'subject'. The

string argument should have the form 'first-last' where first and last are the first and last article numbers to search. Return a pair (response, list),

where list is a list of pairs (id, text), where id is an article number (as a string) and text is the text of the requested header for that article. If the file parameter

is supplied, then the output of the XHDR command is stored in a file. If file is a string, then the method will open a file object with that name, write to it then close

it. If file is a file object, then it will start calling write() on it to store the lines of the command output. If file is supplied, then the returned list is an empty list.

NNTP.post(file)¶
Post an article using the POST command. The file argument is an open file object which is read until EOF using its readline() method. It should be a

well-formed news article, including the required headers. The post() method automatically escapes lines beginning with ..

NNTP.ihave(id, file)¶
Send an IHAVE command. id is a message id (enclosed in '<' and '>'). If the response is not an error, treat file exactly as for the post() method.

NNTP.date()¶
Return a triple (response, date, time), containing the current date and time in a form suitable for the newnews() and newgroups() methods. This is an

optional NNTP extension, and may not be supported by all servers.

NNTP.xgtitle(name[, file])¶

Process an XGTITLE command, returning a pair (response, list), where list is a list of tuples containing (name, title). If the file parameter is supplied,

then the output of the XGTITLE command is stored in a file. If file is a string, then the method will open a file object with that name, write to it then close it. If file

is a file object, then it will start calling write() on it to store the lines of the command output. If file is supplied, then the returned list is an empty list. This is an

optional NNTP extension, and may not be supported by all servers.

RFC2980 says “It is suggested that this extension be deprecated”. Use descriptions() or description() instead.

NNTP.xover(start, end[, file])¶
Return a pair (resp, list). list is a list of tuples, one for each article in the range delimited by the start and end article numbers. Each tuple is of the form

(article number, subject, poster, date, id, references, size, lines). If the file parameter is supplied, then the output of the XOVER

command is stored in a file. If file is a string, then the method will open a file object with that name, write to it then close it. If file is a file object, then it will start

calling write() on it to store the lines of the command output. If file is supplied, then the returned list is an empty list. This is an optional NNTP extension, and

may not be supported by all servers.

NNTP.xpath(id)¶
Return a pair (resp, path), where path is the directory path to the article with message ID id. This is an optional NNTP extension, and may not be supported

by all servers.

NNTP.quit()¶
Send a QUIT command and close the connection. Once this method has been called, no other methods of the NNTP object should be called.

Table Of Contents

21.11. nntplib — NNTP protocol client

• 21.11.1. NNTP Objects

Previous topic

21.10. imaplib — IMAP4 protocol client

Next topic

21.12. smtplib — SMTP protocol client

This Page

• Show Source

Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 21. Internet Protocols and Support »

© Copyright 1990-2010, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Feb 26, 2010. Created using Sphinx 0.6.3.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

	Navigation
	Navigation
	Navigation

	21.11. nntplib — NNTP protocol client¶
	21.11.1. NNTP Objects¶
	Table Of Contents
	Previous topic
	Next topic

	This Page
	Navigation

