
Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 28. Python Runtime Services »

28.10. __future__ — Future statement definitions¶

__future__ is a real module, and serves three purposes:

• To avoid confusing existing tools that analyze import statements and expect to find the modules they’re importing.

• To ensure that future statements run under releases prior to 2.1 at least yield runtime exceptions (the import of __future__ will fail, because there was no

module of that name prior to 2.1).

• To document when incompatible changes were introduced, and when they will be — or were — made mandatory. This is a form of executable documentation,

and can be inspected programmatically via importing __future__ and examining its contents.

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,

 CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int

PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string

PY_RELEASE_SERIAL # the 3; an int

)

OptionalRelease records the first release in which the feature was accepted.

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which the feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules no longer need a future statement to use the

feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped.

Instances of class _Feature have two corresponding methods, getOptionalRelease() and getMandatoryRelease().

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the built-in function compile() to enable the feature in dynamically compiled

code. This flag is stored in the compiler_flag attribute on _Feature instances.

No feature description will ever be deleted from __future__. Since its introduction in Python 2.1 the following features have found their way into the language

using this mechanism:

feature optional in mandatory in effect

nested_scopes 2.1.0b1 2.2 PEP 227: Statically Nested Scopes

generators 2.2.0a1 2.3 PEP 255: Simple Generators

division 2.2.0a2 3.0
PEP 238: Changing the Division

Operator

absolute_import 2.5.0a1 2.7
PEP 328: Imports: Multi-Line and

Absolute/Relative

with_statement 2.5.0a1 2.6 PEP 343: The “with” Statement

print_function 2.6.0a2 3.0 PEP 3105: Make print a function

unicode_literals 2.6.0a2 3.0 PEP 3112: Bytes literals in Python 3000

See also

Future statements

How the compiler treats future imports.

Previous topic

28.9. traceback — Print or retrieve a stack traceback

http://www.python.org/dev/peps/pep-0227
http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0328
http://www.python.org/dev/peps/pep-0343
http://www.python.org/dev/peps/pep-3105
http://www.python.org/dev/peps/pep-3112

Next topic

28.11. gc — Garbage Collector interface

This Page

• Show Source

Navigation

• index

• modules |

• next |

• previous |

• Python v2.6.4 documentation »

• The Python Standard Library »

• 28. Python Runtime Services »

© Copyright 1990-2010, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Feb 26, 2010. Created using Sphinx 0.6.3.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

	Navigation
	Navigation
	Navigation

	28.10. __future__ — Future statement definitions¶
	Previous topic
	Previous topic
	Previous topic
	Next topic

	This Page
	Navigation

